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Abstract
1.	 Understanding processes driving patterns of species distribution and diversity is 
one of the main objectives of community ecology. There has been a growing rec-
ognition that local environmental conditions are not the only factor structuring 
ecological communities, and that large-scale spatial variation and dispersal also 
have major influences.

2.	 The aim of our study was to evaluate spatial variation in fish assemblage structure 
along the longitudinal fluvial gradient of the Bita River, a nearly pristine tributary 
of the Orinoco River in the Llanos region of Colombia. Standardised surveys con-
ducted at 34 sites throughout the basin during the low water period in January 
and March 2016 yielded 25,928 fish specimens representing 201 species. Twenty-
seven environmental variables were recorded at each site, and asymmetric eigen-
vector maps were used to model spatial variables.

3.	 To understand spatial variation in local fish assemblages and their relationships 
with the environmental and spatial variables, two approaches were used. First, we 
applied the elements of metacommunity structure framework, followed by a vari-
ation decomposition analysis that allowed the metacommunity to be classified 
according to six alternative patterns of species distribution and four alternative 
metacommunity paradigms.

4.	 We hypothesised that at a basin scale a major fraction of variation in structure is 
explained by a pure environmental effect and metacommunity patterns should 
reveal a Clementsian distribution. At a more regional scale (localities within a river 
section), assemblages in upstream and downstream regions may reflect different 
metacommunity processes. Because headwater streams are isolated within the 
river network, they should receive fewer migrants and may have local assem-
blages strongly influenced by local environmental conditions and species sorting 
with one of three possible distributional patterns (Clementsian, Gleasonian, or 
evenly spaced) would be observed. Conversely, downstream sites closer to the 
river mouth should be influenced by high dispersal, resulting in a greater impor-
tance of spatial factors and the mass effect, with metacommunity patterns nested 
along the longitudinal gradient.

5.	 Our results suggest that the fish metacommunity in the Bita River exhibits a 
Clementsian distribution, implying that species respond to the environmental and 
fluvial gradient as groups along the longitudinal gradient. These replacements 
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1  | INTRODUC TION

The spatial distributions of species and resultant diversity of local 
assemblages are affected by multiple factors operating at differ-
ent temporal and spatial scales (Pease, González-Díaz, Rodiles-
Hernández, & Winemiller, 2012; Presley, Higgins, & Willig, 2010), 
and understanding how these factors influence patterns has been 
the main objective in community ecology (Landeiro, Magnusson, 
Melo, Espírito-Santo, & Bini, 2011). Stream ecologists have been par-
ticularly active in research addressing relationships of assemblage 
patterns with abiotic (Mouillot, Dumay, & Tomasini, 2007), biotic 
(Macarthur & Levins, 1967), spatial (Peres-Neto & Legendre, 2010), 
and stochastic influences (Chase, Kraft, Smith, Vellend, & Inouye, 
2011). These factors can act independently, sequentially, or simulta-
neously, and often interact (Carvalho & Tejerina-Garro, 2015).

Until recently, most field studies have focused on associations 
between local species assemblages and local environmental factors. 
During the past decade, there has been a rapid increase in research 
showing how local communities are influenced by dispersal of or-
ganisms across various spatial scales and involving ecological pro-
cesses such as habitat selection and responses to disturbances or 
competition (Erős, 2017; Erős, Takács, Specziár, Schmera, & Sály, 
2017; Leibold & Mikkelson, 2002; Leibold et al., 2004; Presley et al., 
2010).

Metacommunity theory explores how local interactions and re-
gional processes (dispersal, sub-population extirpation) shape com-
munity structure. The word metacommunity is used to describe a 
network of local communities of interacting populations linked via 
dispersal. The metacommunity paradigm has stimulated investiga-
tion on how populations interact at regional as well as local scales 
(Logue, Mouquet, Peter, & Hillebrand, 2011). At least four models 
of metacommunity dynamics have been proposed, each defined by 
the relative influences of dispersal, environmental filtering, habitat 
selection, habitat disturbance, biotic interactions, and stochastic 
factors (Leibold et al., 2004).

Three statistical approaches have been developed to study 
metacommunities. These are elements of metacommunity structure 
(EMS), variation partitioning, and zero-sum multinomial distribution 
(Logue et al., 2011; Monteiro, Paiva, & Peres-Neto, 2017). The cur-
rent study adopts the first two approaches to test metacommunity 
theories by analysing spatial variation in fish assemblages in a pris-
tine neotropical river.

The EMS method (Leibold & Mikkelson, 2002) analyses species 
distribution patterns along environmental gradients to reveal mul-
tiple EMS. EMS uses an ordered sites-by-species incidence matrix 
by reciprocal averaging (RA) to evaluate assemblage coherence, 
turnover, and boundary clumping. The method can distinguish 
among six possible patterns of species distribution: checkerboard 
(nonrandom patterns of species co-occurrence), Clementsian 
(clumps of co-occurring species distributed along spatial gradi-
ents), Gleasonian (independent species distributions along spatial 
gradients), evenly spaced (hyperdispersed species distributions), 
nested subsets, and random (Leibold & Mikkelson, 2002; Presley 
et al., 2010). Because the focal units of analysis are species dis-
tributions rather than assemblage structure among sites, this 
approach allows testing of hypotheses about competitive exclu-
sion (negative coherence–checkerboard distribution), random as-
semblies (non-significant coherence), and environmental filtering 
(positive coherence–Clementsian and Gleasonian distributions) 
(Meynard et al., 2013).

Variation partitioning, another commonly used method in 
community ecology, was designed to reveal potential mechanisms 
responsible for spatial variation in assemblage composition (Peres-
Neto, Legendre, Dray, & Borcard, 2006). This approach integrates 
environmental variation and spatial processes and facilitates infer-
ences about the likelihood that one or more of the four metacom-
munity processes (species sorting, mass effect, patch dynamics, null 
model) account for observed assemblage patterns (Cottenie, 2005).

Spatial configurations, such as dendritic structures of river 
networks, also affect fish assemblage structure (Vitorino-Júnior, 

were associated with environmental heterogeneity, especially regarding habitat 
features. Similarly, the variation partitioning analysis showed that the pure envi-
ronmental component was higher than the pure spatial component, which is con-
sistent with species sorting.

6.	 In this paper, we demonstrated that variation partitioning and metacommunity 
structure analyses provided complementary findings to infer processes structur-
ing fish assemblages in the Bita River. Both approaches identified species sorting 
as the principal structuring processes in this system. Therefore, strategies to pre-
serve fish diversity in this system must emphasise maintenance of habitat hetero-
geneity and connectivity.
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Fernandes, Agostinho, & Pelicice, 2016). Brown and Swan (2010) 
found that processes structuring aquatic communities differed de-
pending on the network location (headwaters streams versus main 
stem). Headwaters streams are relatively isolated within river net-
works, possess high habitat heterogeneity, and tend to have strong 
disturbance regimes. Patch dynamics may dominate metacom-
munity dynamics under these conditions (Winemiller, Flecker, & 
Hoeinghaus, 2010). Conversely, habitats in lower reaches are much 
less isolated with greater potential for dispersal, conditions that 
should facilitate species sorting and the mass effect. Community 
structure along river longitudinal gradients also could be affected 
by the unidirectional flow of water. Datry et al. (2016) inferred that 
species diversity increases from upstream to downstream due to the 
combined effect of headwater isolation and water flow limiting up-
stream dispersal.

Relatively few investigations have examined metacommunity 
patterns along longitudinal fluvial gradients (Almeida & Cetra, 2016; 
Carvajal-Quintero et al., 2015; Datry et al., 2016; Vitorino-Júnior 
et al., 2016), and even less research has been conducted in relatively 
pristine rivers with catchments lacking significant human impacts. 
Knowledge gained from unperturbed systems enables predictions 
about future impacts to biodiversity, and can help to guide con-
servation and restoration efforts for rivers that have already been 
degraded.

We investigated spatial variation in fish assemblage structure 
along the longitudinal fluvial gradient of the Bita River, a nearly 
pristine tributary of the Orinoco River in the Llanos region of 
Colombia. We analysed fish species distributions across the longi-
tudinal gradient in an effort to reveal relative influences of abiotic 
environmental and spatial factors, and to infer metacommunity 
models that may account for patterns. We predicted that, at the 
basin-scale, dispersal rates are sufficiently low to allow local as-
semblages to track spatial environmental variation (e.g. species 
sorting), with a major fraction of variation in structure explained 
by a pure environmental effect (Heino, Melo, & Bini, 2015; Heino, 
Melo, Siqueira, et al., 2015). Given that environmental condi-
tions should have greater variation over broader spatial scales, 
metacommunity patterns should reveal high turnover and fairly 
discrete local assemblages with a Clementsian distribution. At a 
more regional scale (localities within a river section), assemblages 
in upstream and downstream regions may reflect different meta-
community processes. Because headwater streams are relatively 
isolated within the river network, they should receive fewer mi-
grants and may have local assemblages strongly influenced by local 
environmental conditions and species sorting. Metacommunity 
patterns of headwaters should reveal high turnover, with three 
possible distributional patterns: Clementsian, Gleasonian, or 
evenly spaced. Conversely, sites located downstream and closer 
to the river mouth should be influenced by high dispersal, result-
ing in a greater importance of spatial factors and the mass effect. 
In the downstream section, in-channel environmental variation 
will be lower, and metacommunity patterns may be nested along 
the longitudinal gradient.

2  | METHODS

2.1 | Study area

The Bita River Basin is located in the eastern plains of the Colombian 
Llanos in the Vichada department, draining an area of 812,312 ha 
flowing east roughly 700 km to the Orinoco River. As in most natural 
drainage systems, stream environmental characteristics in the Bita 
Basin vary along the longitudinal gradient. Most headwater streams 
begin at an elevation of 300 m above sea level. The middle and lower 
sections are characterised by a broad, sinuous channel and flood-
plains with numerous lagoons and seasonally flooded forests and sa-
vannas. The average elevational gradient is low (0.357 m/km), with 
the river entering the Orinoco River at an elevation of 50 m above 
sea level near the municipality of Puerto Carreño. Riparian veg-
etation is comprised of dense gallery forests dominated by Caraipa 
llanorum (Calophyllaceae), Astrocaryum jauari (Arecaceae), and 
Parahancornia oblonga (Apocynaceae), and savannas dominated by 
Axonopus anceps, Panicum cayennense (Poaceae), Bulbostylis capilla-
ris, Cyperus haspan, Rhynchospora cephalotes, (Cyperaceae), Caladium 
macrotites (Araceae), and C. llanorum (Calophyllaceae) (Trujillo & 
Lasso, 2017). The main river and streams contain multiple habitats 
that vary mainly in substrate composition, riparian vegetation, and 
depth. During May–November, the river floods adjacent areas cre-
ating complex and diverse habitats. Average air temperature in the 
region is 27°C, and average annual precipitation is 2,300 mm with 
most rainfall from May to August (Trujillo & Lasso, 2017).

Two field expeditions, each of which lasted 30 days, were per-
formed during January and March 2016 when low-water conditions 
facilitate efficient capture of fishes and relationships between fish 
assemblage structure and habitat should be strongest (Pease et al., 
2012). We selected 34 survey sites distributed along the entire basin 
(E1 uppermost to E34 lowest) following the river’s longitudinal gra-
dient (Supporting Information Table S1). The basin was divided into 
four sections (high, mid–high, mid–low, low) using the linear distance 
of the basin (265 km) divided it by the number of sections (four). This 
value (66.5 km) was used to define the distance between each sec-
tion along the longitudinal gradient (Figure 1).

2.2 | Fish surveys

At each survey site, we selected a 200-m reach encompassing all 
apparent macrohabitats to collect fishes and data for local environ-
mental variables. Fishes were collected using a seine (10 × 1.5 m, 
3-mm mesh) and two gill nets (10 × 2 m, 100-mm mesh). Within each 
study reach, six seine hauls of 20 m were performed, and the gill net 
was deployed for 2 hr. After fishes were removed from nets, they 
were anaesthetised according to an approved Texas A&M univer-
sity animal use protocol (IACUC 2015-0360) by immersion in tric-
aine methane sulfonate (MS-222) and euthanised in an overdose 
of MS-222. Specimens were fixed in 10% formalin, transported to 
the laboratory, and transferred to 70% ethanol for preservation. All 
specimens were identified, catalogued and deposited in the voucher 
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collections of the Universidad del Tolima and Instituto von Humboldt 
in Colombia.

2.3 | Environmental variables

Environmental variables were divided into six categories: water pa-
rameters, substrate, instream cover, channel morphology, local ri-
parian buffer, and landscape variables following Pease et al. (2012) 
(Supporting Information Table S2). Prior to fish sampling, water qual-
ity parameters, such as pH, conductivity (μS), water temperature 
(°C), dissolved oxygen (mg/L) and total solids, were measured at each 
survey site using a multiparameter water quality meter (YSI model 
85). To characterise substrate and instream cover, the percentage 
of cobble (diameter 6–25 cm), sand (0.06–2 mm), mud (<0.06 mm), 
filamentous algae, large woody debris (>50 cm), small woody debris 
(<50 cm), submerged roots, overhanging terrestrial material, and leaf 
litter were visually estimated along the 200-m reach. Variables such 
as; width of riparian buffer (m), area of the riparian forest (ha), and 
landscape (presence of roads, crops, distance to the Orinoco River 
and altitude) were measured by georeferenced satellite images using 

ArcMap (Version 10.3.1) in a circular buffer of 1 km. Stream order 
was calculated using the function stream order in ArcMap (Version 
10.3.1) method Strahler’s classification.

2.4 | Data analysis

Analyses were performed at basin (number of sites = 34) and re-
gional scales. Regional-scale datasets were grouped according to 
four sections along the longitudinal fluvial gradient (high, mid–high, 
mid–low, low). This approach aimed to explore the possibility that 
environmental or spatial variation within river sections influences 
assemblage patterns according to metacommunity processes that 
may differ among sections. Using the method of Dufrene and 
Legendre (1997), we calculated indicator values for species most 
common within a given river section. This method is based on spe-
cies abundance (specificity) and frequency (fidelity) at survey sites. 
Values from this method range from 0 to 1, with 1 being a perfect 
indicator of a river section. Significance of indicator values was 
evaluated using the difference between the observed value and the 
mean of values obtained from 1,000 random permutations. Species 

F IGURE  1   Map of the Bita River Basin showing the four sections and the 34 survey sites
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indicator analysis was performed using the function Indval of the 
package labdsv (Roberts, 2007) in the R statistical language (Version 
3.4.1) (R Core Team, 2017).

2.5 | Spatial variables

Because fish dispersal in rivers is difficult to estimate, we used spa-
tial predictors as proxies for dispersal potential. Spatial eigenvec-
tors were used as predictors to control for spatial autocorrelation 
and estimate the influence of spatial distance on species distribu-
tions and patterns of assemblage structure (Peres-Neto & Legendre, 
2010). Spatial patterns were modelled through asymmetric eigen-
vector maps (AEM), an approach proposed by Blanchet, Legendre, 
and Borcard (2008b). This method takes into account the directional 
aspect of inter-site distances of systems such as river networks (e.g. 
water flow, relative position), a limitation of methods such as prin-
cipal coordinates of neighbour matrices and Moran’s eigenvector 
maps (Blanchet, Legendre, Maranger, Monti, & Pepin, 2011; Sharma, 
Legendre, De Cáceres, & Boisclair, 2011).

To perform the AEM, we used the distribution of sites across 
the basin to construct a connection diagram that links sites to one 
another according to pathways within the river network (Figure 1, 
Supporting Information Table S3) following the flow direction from 
upstream to downstream. Using the connection diagram, a sites-by-
edges matrix was constructed, and this matrix was used to calculate 
asymmetrical spatial eigenfunctions through singular value decom-
position, which were used later as spatial descriptors. AEM eigen-
functions were calculated using the function aem from the package 
adespatial in R (Version 3.4.1) (Dray et al., 2017). To obtain an ad-
ditional spatial descriptor, we measured the watercourse distance 
as the distance from each point to the river mouth along the wa-
tercourse using georeferenced satellite images in ArcMap (Version 
10.3.1). This variable is more relevant to fish dispersal than straight-
line distance that includes overland segments (albeit such dispersal 
routes are possible during the annual flood pulse).

2.6 | Elements of the metacommunity structure

Using the sites-by-species incidence matrix (excluding rare species 
that occurred at only one site) as input for RA, EMS were analysed 
based on species scores on the first two axes. To evaluate patterns 
with respect to six idealised distributional patterns: (1) checkerboard 
(Diamond, 1975), (2) nested subsets (Patterson & Atmar, 1986), (3) 
Clementsian (Clements, 1916), (4) Gleasonian (Gleason, 1926), (5) 
evenly spaced (Tilman, 1982), and (6) random (Simberloff, 1983), we 
followed the framework proposed by Leibold and Mikkelon (2002) 
and Presley et al. (2010).

Coherence was assessed by calculating the number of gaps in 
species range (observed absences) from the ordered matrix from 
RA. Statistical significance of coherence was evaluated using the 
z-score test comparing observed absences with those expected 
based on 1,000 randomised simulations. Whenever observed ab-
sences are greater than expected (negative coherence), there is a 

checkerboard pattern. Conversely, if observed absences are less 
than expected under the null model (positive coherence), the anal-
ysis tests for evidence of species turnover and boundary clump-
ing. No significant difference between observed and expected 
absences indicates random distributions (no coherence) (Leibold 
& Mikkelson, 2002).

Turnover was evaluated by calculating the number of species 
replacements between sites. We used a z-score test to compare 
observed species replacements with the mean for species re-
placements obtained from 1,000 null simulations. Significantly 
fewer observed replacements are indicative of low turnover and 
distributions that are nested subsets, whereas more observed re-
placements indicate high turnover. Finally, boundary clumping was 
evaluated using Morisita’s index, for which a value of one indicates 
that boundaries are not clumped, values <1 indicate clumping, and 
<1 indicates hyperdispersion. Statistical significance of Morisita’s 
index was determined using the χ2 test. More information about 
inference of idealised patterns can be found in fig. 1 of Presley 
et al. (2010).

We applied a fixed proportional null model (i.e. r1 null model in 
Metacommunity function in R) to test significance of coherence and 
turnover. This null model maintains species richness of each sampling 
site, but fills species ranges based on their marginal probabilities. 
Random simulated matrices were calculated using 1,000 simulations 
(Dallas, 2014). EMS were assessed using the Metacommunity func-
tion of the Metacom package (Dallas, 2014) in R.

2.7 | Variation partitioning

We used variation partitioning analysis (Peres-Neto et al., 2006) as 
an additional means to identify metacommunity types and to assess 
the relative contribution of environmental and spatial predictors on 
fish distributions at basin and regional scales. This method allowed 
us to determine the contribution of environmental conditions in-
dependent of space, and vice versa, controlling for type I error as a 
product of spatial autocorrelation in the environmental component 
(Peres-Neto & Legendre, 2010). Type I error may lead to spurious 
conclusions, generating significant species–environment relation-
ships that are artefacts. Partitioning analysis was conducted using 
the adjusted R-squared in redundancy analysis on the Hellinger-
transformed species-by-sites abundance matrix and two sets of pre-
dictors; environment [E] and space [S].

To create each set of predictors, first, we reduced the num-
ber of variables in each matrix, because they reduce the statistical 
power of the test to identify unique and significant environmental 
and spatial contributions (Peres-Neto & Legendre, 2010). We per-
formed a variable selection for each set of predictors to identify 
significant variables (p < .05) associated with the species-by-sites 
abundance matrix. For the [E] matrix, we transformed the environ-
mental variables due to nonhomogeneous units and verified that 
the distribution was normal. Those variables expressed as propor-
tions were transformed to the arcsine of their square root. The re-
maining variables were log(x + 1) transformed, with the exception 
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of ordinal and categorical data for which no transformation was 
done. Data for all variables were standardised and centred by 
calculating z-scores (mean = 0; standard deviation = 1) (Borcard, 
Gillet, & Legendre, 2011; Falke & Fausch, 2010). The function for-
ward.sel from the R library adespatial (Dray et al., 2017) was used 
to perform variable selection using 999 permutations with a sig-
nificance level of p = .05. Selected variables comprised the envi-
ronmental matrix [E] used for the partition analysis.

Spatial predictors from the AEM analysis and inter-site dis-
tance data were tested for inclusion in the spatial matrix [S] using 
the forward.sel function of the R library adespatial, using the same 
approach as described for the [E] matrix. Selected variables were 
included in the [S] matrix for the partitioning analysis. Finally, with 
our three datasets (Hellinger-transformed sites-by-species matrix, 
[E] and [S]), we applied the varpart function of the vegan library 
in R to perform variation partitioning analysis as proposed by 
Blanchet, Legendre, and Borcard (2008a) and Borcard et al. (2011).

The significance levels of the components produced by the vari-
ation partitioning were used to classify the fish metacommunity 
according to one of the four metacommunity paradigms; species 
sorting, mass effect, neutral model and patch dynamics (Leibold 
et al., 2004). To choose the proper paradigm, we applied the decision 
tree proposed by Cottenie (2005).

2.8 | Drivers of metacommunity structure

We used two approaches to identify the underlying environmen-
tal and spatial factors that correlate with observed patterns in the 
metacommunity organisation at the basin and regional level. First, 
we calculated Spearman-rank correlations between the two domi-
nant axes extracted from the RA used in the EMS framework and 
each variable from the set of environmental and spatial predictors. 
Second, a variable selection procedure was performed for each 
group (environmental and spatial) using the forward.sel function of 
the R library adespatial. Correlations were calculated using the func-
tion cor.test of the stats library in R.

3  | RESULTS

High and mid–high sections were characterised by higher values 
of dissolved oxygen, elevation, distance from the main source, sa-
vanna area, flow, and percentages of grasses and filamentous algae 
(Supporting Information Table S2). Channel width, water tem-
perature, and total solids tended to be lower at upper-basin sites. 
Substratum and instream cover were heterogeneous within all four 
sections. Sites located in the lower sections tended to have more ex-
tensive riparian forest, more lagoons in adjacent floodplains, wider 
channels, and lower flow velocity (Supporting Information Table S2).

A total of 25,928 fish specimens, representing 201 species, 39 
families, and 10 orders, were collected during the study. Sixty species 
were collected in the high section, 148 in the mid–high, 142 in the mid–
low, and 67 in the low section. Average number of specimens per site 

was 762, and species richness varied from 4 to 55. The most abundant 
species were Amazonprattus scintilla (Engraulidae) and two species of 
the genus Hemigrammus (Characidae), H. elegans and H. geisleri. These 
three species represented nearly 30% of the collected fish specimens 
(Supporting Information Table S4). Fifty-one rare species were col-
lected at single sites. Several species were identified as indicators for 
the low (12 spp.) and high (six spp.) sections, and few or none were 
identified for the mid–high (one sp.) and low (0 sp.) sections (Table 1).

3.1 | Elements of metacommunity structure

At the basin scale (34 sites), the EMS revealed positive coherence with 
a Clementsian distribution along both of the dominant axes model-
ling gradients of fish assemblage structure (RA1 and RA2) (Table 2, 
Figure 2). Thus, at a broad spatial scale, species seem to respond as 
groups to environmental factors, leading to relatively discrete assem-
blages along the longitudinal gradient. The Clementsian pattern iden-
tified for RA1 was positively correlated with channel width, stream 
order and spatial predictors (AEM21, AEM25), and negatively corre-
lated with variables associated to substrate, instream cover and local 
riparian vegetation (Table 3). For RA2, only the spatial predictor AEM1 
(positive) and flow (negative) were correlated with site scores (Table 3).

Metacommunity structure was analysed for sites within each 
of the four sections along the longitudinal fluvial gradient (high, 
mid–high, mid–low and low). Assemblages in the high and low sec-
tions had negative coherence and a random pattern for both RA 
axes in the high section and RA1 in the low section; RA2 in the 

TABLE  1 Summary of the indicator species analysis for each 
section in the Bita Basin

Species Section Indicator value

Hemigrammus schmardae High 0.59

Parotocinclus eppleyi High 0.40

Ammocryptocharax elegans High 0.40

Farlowella vittata High 0.38

Mastiglanis asopos High 0.37

Phenacorhamdia anisura High 0.35

Steindachnerina argentea Mid–high 0.48

Nannostomus unifasciatus Low 0.89

Microphilypnus ternetzi Low 0.84

Hemigrammus elegans Low 0.83

Apistogramma minima Low 0.66

Brittanichthys sp Low 0.61

Curimatopsis evelynae Low 0.60

Hemigrammus analis Low 0.60

Acaronia vultuosa Low 0.59

Hemigrammus rhodostomus Low 0.58

Ochmacanthus alternus Low 0.58

Acestrorhynchus minimus Low 0.57

Hemigrammus barrigonae Low 0.33

Only species with statistically significant values (p < 0.05) are listed.
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TABLE  2   Results of EMS analysis of fish metacommunity structure at the level of the entire Bita Basin and at the regional level for high, 
mid–high, mid–low and low sections of the river

Axis of variation Basin High Mid–high Mid–low Low

Species 145 37 84 85 55

Sites 34 5 12 14 3

Primary axis

Coherence

Observed absences 2,506 55 318 453 14

Expected absences 3,032 41 445 554 14

p-value <0.001 0.127 <0.001 0.001 0.9

Turnover

Observed replacements 347,752 543 20,498 27,534 630

Expected replacements 186,586 624 14,397 20,631 621

p-value <0.001 0.15 <0.001 <0.001 0.89

Clumping

Morisita’s index 1.58 1.02 1.37 1.14 1

p-value <0.001 0.17 <0.001 <0.001 >0.999

Best-fit patterns Clementsian Random Clementsian Clementsian Random

Secondary axis

Coherence

Observed absences 2,706 40 383 541 22

Expected absences 3,030 40.32 447 557 13

p-value 0.001 0.96 0.03 0.64 0.007

Turnover

Observed replacements 366,210 597 19,630 14,070 377

Expected replacements 186,480 622 14,397 20,697 541

p-value <0.001 0.65 <0.001 <0.001 0.004

Clumping

Morisita’s index 1.55 1.36 1.37 1.17 1

p-value <0.001 0.004 <0.001 <0.001 >0.999

Best-fit patterns Clementsian Random Clementsian Random Nested 
distribution

Statistically significant values (p < 0.05) are shown in bold type.

F IGURE  2   Species distributions 
among 34 sites in the Bita Basin ordered 
according to scores on the first axis of 
the reciprocal averaging, revealing a 
Clementsian gradient. Sites are in rows; 
species are in columns
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low section revealed a nested distribution. No significant correla-
tions between assemblage structure and environmental or spatial 
factors were found for the high and low sections (Tables 2 and 3, 
Figure 3).

Mid–high and mid–low sections displayed Clementsian pat-
terns of assemblage structure for both the first and second RA 
axes. For the mid–high section, no significant correlations were 
obtained between RA1 and environmental or spatial variables, 
however, RA2 was positively correlated with the presence of roads 
and the spatial predictor AEM1 (Tables 2 and 3, Figure 3). For the 
mid–low section, RA1 was positively correlated with substrate and 
instream cover and RA2 with the spatial predictor AEM1 (Tables 2 
and 3, Figure 3).

3.2 | Variation partitioning analysis

At the basin scale, all the components from variation partitioning (E, 
S, E+S, E|S, S|E) explained significant (p < .05) variation in fish assem-
blage structure, supporting the idea that metacommunity dynamics 
influence patterns at that scale (Table 4). Around 19% of the total 
explained variation (E+S) was modelled by the combined influence 
of environment and spatial predictors, 6.9% by a pure environmental 
component (E|S), and 4.6% by a pure spatial component (S|E). Eighty-
one percent of the variation was unexplained. Environmental varia-
tion at the basin scale was significantly influenced by percentage of 

mud substrate, small woody debris, and water conductivity (Table 4). 
Only four of 33 spatial predictors were significant (AEM1, AEM, 16, 
AEM18, AEM21; Table 4).

At the regional scale, the number of sites within the high and 
low sections was too small for statistical analysis, and only the 
mid–high and mid–low sections were analysed. Only the envi-
ronmental component (E) explained significant variation in fish 
assemblage structure within each of these sections (Table 4), indi-
cating that it was not possible to infer any metacommunity model. 
In the mid–high section, a significant environmental component 
influenced most strongly by percentage of mud substrate and 
small woody debris explained 16% of assemblage variation. In the 
mid–low section, 14% of assemblage variation was explained by 
an environmental component, with conductivity and percentage 
of small woody debris most influential.

3.3 | Drivers of fish community structure

The set of variables selected by variation partitioning included 
most of the ones that had highest Spearman rank correlations. At 
the basin level, environmental variables related to substrate and 
instream cover were identified by both methods (Tables 3 and 4). 
Environmental predictors, such as percentages of mud substrate and 
small woody debris and the spatial predictor AEM1, were significant 
at both basin and regional scales (Tables 3 and 4).

TABLE  3 Spearman-rank correlations between predictors and scores obtained from the first two axes from the reciprocal averaging 
ordination of the sites-by-species incidence matrix in the elements of metacommunity structure framework

Variables

Basin Mid–high Mid–low

r p r p r p

Primary axis

 (%) Mud −0.55 <0.01 0.61 0.02

 (%) Large woody debris −0.48 <0.01

 (%) Small woody debris −0.48 <0.01 0.55 0.04

 (%) Submerged roots −0.48 <0.01 0.61 0.02

 (%) Stream shaded by tree canopy −0.47 <0.01 0.61 0.02

Width 0.37 0.03

Stream order 0.52 <0.01

AEM21 0.39 0.02

AEM25 0.39 0.02

Secondary axis

 (%) Mud −0.71 0.01

 (%) Large woody debris −0.66 0.02

 (%) Small woody debris −0.75 <0.01

 (%) Stream shaded by tree canopy −0.75 <0.01

Flow −0.47 <.01

Near to roads 0.66 0.02

AEM1 0.51 <.01 0.6 0.04 0.69 0.01

Only statistically significant values (p < 0.05) are shown. No significant correlations were found for high and low sections.
AEM: asymmetric eigenvector maps
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F IGURE  3   Species distributions within four river sections ordered according to scores on the first reciprocal axis
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Component

Bita basin Mid–high Mid–low

AdjR2 p AdjR2 p AdjR2 p

E 0.14 0.001 0.16 0.007 0.14 0.002

S 0.12 0.001 0.00 0.5 0.00 0.56

E+S 0.19 0.001 0.18 0.2 0.14 0.13

E|S 0.069 0.001 0.20 0.3 0.16 0.16

S|E 0.046 0.025 0.02 0.6 0.00 0.51

b 0.075

R 0.81 0.82 0.86

Variables selected %Mud [E] 
%Small woody 
debris [E] 
Conductivity [E] 
AEM1 [S] 
AEM16 [S] 
AEM18 [S] 
AEM21 [S]

%Mud [E] 
%Small woody 
debris [E]

Conductivity [E] 
%Small woody 
debris [E]

AEM: asymmetric eigenvector maps; AdjR2: adjusted R2 for the percentage of variation; E: environ-
mental variation; S: spatial variation; E+S: Total explained variation; E|S, Pure environmental varia-
tion; S|E: Pure spatial variation; b: Variation shared by environmental and spatial factors; 
R: Unexplained variation (residual). Significant values (p < 0.05) are shown in bold.

TABLE  4 Variation partitioning analysis 
for fish assemblages and selected groups 
of environmental and spatial variables at 
basin and regional scales
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4  | DISCUSSION

In this study, we applied complementary statistical analyses to 
investigate fish species distributions and variation in assemblage 
structure across a longitudinal fluvial gradient to reveal the relative 
influence of factors associated with environmental conditions (e.g. 
habitat features, environmental filtering) and spatial relationships 
influencing dispersal. Results from these analyses provided a basis 
to infer the relative influence of biotic interactions and stochastic 
processes in community assembly at two spatial scales. Our results 
suggest that the fish metacommunity in the Bita River exhibits a 
Clementsian distribution, implying that species respond to the en-
vironmental and fluvial gradient as groups with fairly consistent 
compositions (Clements, 1916). This pattern also implies a poten-
tial effect of environmental filtering at the scale of the entire basin. 
Similarly, the variation partitioning analysis showed that the varia-
tion explained by the pure environmental component was higher 
than the pure spatial component, which also is consistent with spe-
cies sorting. Species sorting occurs when organisms select habitats 
that convey relatively high fitness, and/or avoid or are otherwise 
eliminated from habitats that reduce their fitness (Soininen, 2014). 
These findings support our prediction that, at the basin scale, dis-
persal rates are low and assemblage structure is strongly influenced 
by species sorting.

Our regional-scale results also revealed a Clementsian distribu-
tion of local assemblage composition. This pattern could have been 
caused by species responses to spatial variation of abiotic and biotic 
environmental factors. Spearman correlation between environmen-
tal variables and site scores on gradients of assemblage variation in-
dicated that stream order and channel size had strong associations 
with local assemblage structure. Variables associated with substrate 
composition and instream cover also had significant associations. 
Fishes in the Bita River apparently respond to these environmen-
tal variables as relatively clumped groups. Clementsian assemblage 
structure has been found in plants (Meynard et al., 2013; Willig 
et al., 2011), mammals (López-González, Presley, Lozano, Stevens, & 
Higgins, 2012; Presley & Willig, 2010), and various freshwater or-
ganisms, including plankton, macroinvertebrates, and fish (Dallas & 
Drake, 2014; Erős et al., 2017; Fernandes, Henriques-Silva, Penha, 
Zuanon, & Peres-Neto, 2014; Tonkin, Stoll, Jähnig, & Haase, 2016; 
Torres & Higgins, 2016).

We proposed that some metacommunity processes and resul-
tant patterns would not be the same at two different spatial scales 
of analysis. We found positive coherence and turnover in upstream 
regions, and positive coherence and negative turnover with nested 
distributions in downstream regions. These patterns were not pre-
dicted a priori. At the regional scale, a Clementsian distribution was 
found only in the mid–high and mid–low sections of the basin, sug-
gesting that species responded as groups to environmental filters 
more strongly in these middle sections of longitudinal gradient. 
Assemblage coherence was non-significant (i.e. not statistically 
different from a random distribution) for the high and low sec-
tions of the river. According to Presley et al. (2010), non-significant 

coherence is not always an indicator of random structures. Dallas 
and Drake (2014) found that in most studies in which random pat-
terns were found, samples contained few species, few sites, or both, 
and therefore there was not enough statistical power to test co-
herence using randomisation procedures. In our study, there were 
fewer survey sites for the highest and lowest sections of the river, 
which may account for non-significant coherence in those sections. 
Nonetheless, Figure 3 reveals a pattern of species distribution with 
high turnover and boundary clumping in the high section; such a 
pattern is less discernible for the low section.

In the low section of the river, distribution patterns were differ-
ent for the two assemblage ordination axes. Random distributions 
were inferred based on the first ordination axis and nested distri-
butions were found for the second axis. Results of the second axis 
support our hypothesis that environmental gradients over smaller 
spatial scales in the low section may promote nested distribution 
patterns. Sites in this section were characterised by substrates com-
prised almost entirely of sand with patches of leaf litter and low 
variation in water physicochemistry. Distribution patterns may be 
more likely to be nested when sample size is small and environmen-
tal gradients are short (Tonkin et al., 2016). Conversely, large sample 
sizes and long environmental gradients may increase the likelihood 
of finding Clementsian and Gleasonian patterns.

At the basin scale, the total variation in assemblage structure 
captured by the model (19%) was decomposed into 6.9% purely en-
vironmental, 7.5% shared by environmental and spatial, and 4.6% 
purely spatial components (each fraction with p < 0.001). The pure 
environmental component was strongly associated with the per-
centage of mud substrate, small woody debris, and conductivity. 
Shared environmental and spatial factors also were associated with 
the percentage of mud and conductivity. The pure spatial compo-
nent was represented by eigenvectors from AEM, predictors that 
are not easily interpretable because they integrate multiple spa-
tial scales (Peres-Neto & Legendre, 2010), with small-scale spatial 
variables tending to be associated with mass effect dynamics and 
large-scale spatial variables tending to be associated with dispersal 
limitation (Heino, Melo, & Bini, 2015; Heino, Melo, Siqueira, et al., 
2015). At the scale of the entire basin, both processes probably 
occur simultaneously.

The percentage of variation explained by our partitioning anal-
ysis was low (19%), a common finding in community ecology stud-
ies (Castillo-Escrivà et al., 2016; Devercelli, Scarabotti, Mayora, 
Schneider, & Giri, 2016; Erős et al., 2017; Legendre & Legendre, 
2012; Ter Braak & Šmilauer, 2012). The large amount of unexplained 
variation could be due to several factors, such as failure to include 
other relevant environmental variables and spatial predictors or 
variables related to other processes such as biotic interactions. Of 
course, there also could be a large influence of stochastic dynamics. 
Soininen (2016) reviewed 322 datasets and found that spatial predic-
tors obtained from spatial eigenvector analysis generally explained 
a small fraction of total assemblage variation, which suggests that 
spatial predictors from AEM may perform poorly in capturing pat-
terns reflecting dispersal dynamics. Monteiro et al. (2017) proposed 
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the use of patch connectivity metrics as predictors of dispersal dy-
namics rather than spatial eigenvectors. They found that the patch 
connectivity framework increased the amount of explained variation 
by as much as 50%.

Because both pure environmental and pure spatial components 
were statistically significant, both species sorting and mass effect 
dynamics could have influenced fish assemblage structure at the 
basin scale (Cottenie, 2005). However, because the proportion 
explained by the pure environmental fraction was larger than the 
spatial fraction (6.9% versus 4.6%), species sorting was probably the 
more influential component structuring fish assemblages in this sys-
tem. These results are in accordance with Heino, Melo, & Bini (2015), 
who found that an intermediate amount of dispersal was needed for 
the species sorting process, since species need to disperse from one 
place to another, searching for sites with the appropriate environ-
mental conditions to thrive.

Soininen (2014) reviewed 326 investigations that used variation 
partitioning analysis, finding that environmental variables usually 
explained the most variation in assemblage composition and species 
sorting was most often inferred. Species sorting may be the preva-
lent metacommunity model for river and stream fish assemblages 
(Cottenie, 2005; Falke & Fausch, 2010; Heino, Melo, & Bini, 2015; 
Heino, Melo, Siqueira, et al., 2015).

At a smaller spatial scale, we predicted that species sorting 
strongly influences assemblages in headwaters where habitats are 
relatively isolated within the river network, whereas assemblages in 
downstream reaches would have greater dispersal and be more in-
fluenced by mass effect dynamics. These predictions were not con-
firmed. Based on variation partitioning analysis and the decision tree 
of Cottenie (2005), no evidence was obtained to support any of the 
metacommunity paradigms proposed by Leibold et al. (2004). The 
variation partitioning procedure could only be performed for the 
mid–high and mid–low sections that had sufficiently large samples. 
Only the environmental fraction was significant, and this result can 
be prone to type I error.

In summary, variation partitioning and metacommunity structure 
analyses provided complementary findings to infer processes struc-
turing fish assemblages in the Bita River. Both approaches identified 
environmental filtering and species sorting as the principal structur-
ing processes in this system. Variation partitioning analysis implied 
that dispersal plays a significant role at the basin scale; however, the 
environmental fraction explained more variation. Both analyses re-
vealed assemblage patterns correlated with components of habitat 
structure. Similar conclusions have been reported from studies con-
ducted at smaller spatial scales in other tropical rivers (Arrington, 
Winemiller, & Layman, 2005; Willis, Winemiller, & Lopez-Fernandez, 
2005), with some also inferring that biotic interactions play a sig-
nificant role in structuring fish assemblages within local habitats 
(Montaña, Winemiller, & Sutton, 2014). In a study of the Cinaruco 
River, an Orinoco tributary in the Venezuelan Llanos with character-
istics similar to the Bita River, Willis et al. (2005) found that habitat 
structural complexity was strongly correlated with the functional 
diversity of fish assemblages. These findings combined with ours, 

suggest that fish community structure of Neotropical rivers and 
streams is influenced by local environmental conditions, especially 
aspects associated with substrate and habitat structural complexity, 
that in turn affect species sorting that results in Clementsian pat-
terns of species distribution. Improved understanding of the influ-
ence of dispersal, environmental filtering and biotic interactions on 
species assemblages in pristine systems will be essential for efforts 
to conserve and restore biodiversity. For example, if the spatial dis-
tribution of fishes in the Bita River derives largely from dispersal and 
environmental filtering, then strategies to conserve fish diversity 
must emphasise maintenance of habitat heterogeneity and connec-
tivity at appropriate spatial and temporal scales.
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