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Abstract
1.	 Understanding	processes	driving	patterns	of	species	distribution	and	diversity	is	
one	of	the	main	objectives	of	community	ecology.	There	has	been	a	growing	rec-
ognition	that	 local	environmental	conditions	are	not	the	only	factor	structuring	
ecological	communities,	and	 that	 large-scale	spatial	variation	and	dispersal	also	
have	major	influences.

2.	 The	aim	of	our	study	was	to	evaluate	spatial	variation	in	fish	assemblage	structure	
along	the	longitudinal	fluvial	gradient	of	the	Bita	River,	a	nearly	pristine	tributary	
of	the	Orinoco	River	in	the	Llanos	region	of	Colombia.	Standardised	surveys	con-
ducted	at	34	sites	throughout	the	basin	during	the	low	water	period	in	January	
and	March	2016	yielded	25,928	fish	specimens	representing	201	species.	Twenty-
seven	environmental	variables	were	recorded	at	each	site,	and	asymmetric	eigen-
vector	maps	were	used	to	model	spatial	variables.

3.	 To	understand	spatial	variation	 in	 local	 fish	assemblages	and	their	 relationships	
with	the	environmental	and	spatial	variables,	two	approaches	were	used.	First,	we	
applied	the	elements	of	metacommunity	structure	framework,	followed	by	a	vari-
ation	 decomposition	 analysis	 that	 allowed	 the	metacommunity	 to	 be	 classified	
according	to	six	alternative	patterns	of	species	distribution	and	four	alternative	
metacommunity	paradigms.

4.	 We	hypothesised	that	at	a	basin	scale	a	major	fraction	of	variation	in	structure	is	
explained	by	a	pure	environmental	effect	and	metacommunity	patterns	 should	
reveal	a	Clementsian	distribution.	At	a	more	regional	scale	(localities	within	a	river	
section),	assemblages	in	upstream	and	downstream	regions	may	reflect	different	
metacommunity	processes.	Because	headwater	streams	are	 isolated	within	 the	
river	 network,	 they	 should	 receive	 fewer	migrants	 and	may	 have	 local	 assem-
blages	strongly	influenced	by	local	environmental	conditions	and	species	sorting	
with	 one	 of	 three	 possible	 distributional	 patterns	 (Clementsian,	Gleasonian,	 or	
evenly	spaced)	would	be	observed.	Conversely,	downstream	sites	closer	 to	 the	
river	mouth	should	be	influenced	by	high	dispersal,	resulting	in	a	greater	impor-
tance	of	spatial	factors	and	the	mass	effect,	with	metacommunity	patterns	nested	
along	the	longitudinal	gradient.

5.	 Our	 results	 suggest	 that	 the	 fish	 metacommunity	 in	 the	 Bita	 River	 exhibits	 a	
Clementsian	distribution,	implying	that	species	respond	to	the	environmental	and	
fluvial	 gradient	 as	 groups	 along	 the	 longitudinal	 gradient.	 These	 replacements	
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1  | INTRODUC TION

The	spatial	distributions	of	 species	and	 resultant	diversity	of	 local	
assemblages	 are	 affected	 by	 multiple	 factors	 operating	 at	 differ-
ent	 temporal	 and	 spatial	 scales	 (Pease,	 González-	Díaz,	 Rodiles-	
Hernández,	 &	Winemiller,	 2012;	 Presley,	 Higgins,	 &	Willig,	 2010),	
and	understanding	how	these	 factors	 influence	patterns	has	been	
the	 main	 objective	 in	 community	 ecology	 (Landeiro,	 Magnusson,	
Melo,	Espírito-	Santo,	&	Bini,	2011).	Stream	ecologists	have	been	par-
ticularly	 active	 in	 research	 addressing	 relationships	 of	 assemblage	
patterns	 with	 abiotic	 (Mouillot,	 Dumay,	 &	 Tomasini,	 2007),	 biotic	
(Macarthur	&	Levins,	1967),	spatial	(Peres-	Neto	&	Legendre,	2010),	
and	 stochastic	 influences	 (Chase,	 Kraft,	 Smith,	 Vellend,	 &	 Inouye,	
2011).	These	factors	can	act	independently,	sequentially,	or	simulta-
neously,	and	often	interact	(Carvalho	&	Tejerina-	Garro,	2015).

Until	 recently,	most	 field	 studies	have	 focused	on	associations	
between	local	species	assemblages	and	local	environmental	factors.	
During	the	past	decade,	there	has	been	a	rapid	increase	in	research	
showing	how	 local	 communities	 are	 influenced	by	dispersal	 of	 or-
ganisms	across	various	 spatial	 scales	and	 involving	ecological	pro-
cesses	 such	as	habitat	 selection	and	 responses	 to	disturbances	or	
competition	 (Erős,	 2017;	 Erős,	 Takács,	 Specziár,	 Schmera,	 &	 Sály,	
2017;	Leibold	&	Mikkelson,	2002;	Leibold	et	al.,	2004;	Presley	et	al.,	
2010).

Metacommunity	theory	explores	how	local	interactions	and	re-
gional	processes	(dispersal,	sub-	population	extirpation)	shape	com-
munity	 structure.	The	word	metacommunity	 is	used	 to	describe	a	
network	of	 local	communities	of	 interacting	populations	 linked	via	
dispersal.	 The	metacommunity	paradigm	has	 stimulated	 investiga-
tion	on	how	populations	 interact	at	regional	as	well	as	 local	scales	
(Logue,	Mouquet,	Peter,	&	Hillebrand,	2011).	At	 least	 four	models	
of	metacommunity	dynamics	have	been	proposed,	each	defined	by	
the	relative	influences	of	dispersal,	environmental	filtering,	habitat	
selection,	 habitat	 disturbance,	 biotic	 interactions,	 and	 stochastic	
factors	(Leibold	et	al.,	2004).

Three	 statistical	 approaches	 have	 been	 developed	 to	 study	
metacommunities.	These	are	elements	of	metacommunity	structure	
(EMS),	variation	partitioning,	and	zero-	sum	multinomial	distribution	
(Logue	et	al.,	2011;	Monteiro,	Paiva,	&	Peres-	Neto,	2017).	The	cur-
rent	study	adopts	the	first	two	approaches	to	test	metacommunity	
theories	by	analysing	spatial	variation	in	fish	assemblages	in	a	pris-
tine	neotropical	river.

The	EMS	method	(Leibold	&	Mikkelson,	2002)	analyses	species	
distribution	patterns	along	environmental	gradients	to	reveal	mul-
tiple	EMS.	EMS	uses	an	ordered	sites-	by-	species	incidence	matrix	
by	 reciprocal	 averaging	 (RA)	 to	 evaluate	 assemblage	 coherence,	
turnover,	 and	 boundary	 clumping.	 The	 method	 can	 distinguish	
among	six	possible	patterns	of	species	distribution:	checkerboard	
(nonrandom	 patterns	 of	 species	 co-	occurrence),	 Clementsian	
(clumps	 of	 co-	occurring	 species	 distributed	 along	 spatial	 gradi-
ents),	Gleasonian	(independent	species	distributions	along	spatial	
gradients),	 evenly	 spaced	 (hyperdispersed	 species	 distributions),	
nested	subsets,	and	random	(Leibold	&	Mikkelson,	2002;	Presley	
et	al.,	 2010).	Because	 the	 focal	 units	of	 analysis	 are	 species	dis-
tributions	 rather	 than	 assemblage	 structure	 among	 sites,	 this	
approach	 allows	 testing	of	 hypotheses	 about	 competitive	 exclu-
sion	(negative	coherence–checkerboard	distribution),	random	as-
semblies	 (non-	significant	coherence),	and	environmental	 filtering	
(positive	 coherence–Clementsian	 and	 Gleasonian	 distributions)	
(Meynard	et	al.,	2013).

Variation	 partitioning,	 another	 commonly	 used	 method	 in	
community	 ecology,	was	designed	 to	 reveal	 potential	mechanisms	
responsible	for	spatial	variation	 in	assemblage	composition	(Peres-	
Neto,	 Legendre,	Dray,	&	Borcard,	 2006).	 This	 approach	 integrates	
environmental	variation	and	spatial	processes	and	facilitates	 infer-
ences	about	the	likelihood	that	one	or	more	of	the	four	metacom-
munity	processes	(species	sorting,	mass	effect,	patch	dynamics,	null	
model)	account	for	observed	assemblage	patterns	(Cottenie,	2005).

Spatial	 configurations,	 such	 as	 dendritic	 structures	 of	 river	
networks,	 also	 affect	 fish	 assemblage	 structure	 (Vitorino-	Júnior,	

were	 associated	with	 environmental	 heterogeneity,	 especially	 regarding	 habitat	
features.	Similarly,	the	variation	partitioning	analysis	showed	that	the	pure	envi-
ronmental	component	was	higher	than	the	pure	spatial	component,	which	is	con-
sistent	with	species	sorting.

6.	 In	 this	 paper,	we	 demonstrated	 that	 variation	 partitioning	 and	metacommunity	
structure	analyses	provided	complementary	findings	to	infer	processes	structur-
ing	fish	assemblages	in	the	Bita	River.	Both	approaches	identified	species	sorting	
as	the	principal	structuring	processes	in	this	system.	Therefore,	strategies	to	pre-
serve	fish	diversity	in	this	system	must	emphasise	maintenance	of	habitat	hetero-
geneity	and	connectivity.

K E Y W O R D S
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Fernandes,	 Agostinho,	 &	 Pelicice,	 2016).	 Brown	 and	 Swan	 (2010)	
found	that	processes	structuring	aquatic	communities	differed	de-
pending	on	the	network	location	(headwaters	streams	versus	main	
stem).	Headwaters	 streams	are	 relatively	 isolated	within	 river	net-
works,	possess	high	habitat	heterogeneity,	and	tend	to	have	strong	
disturbance	 regimes.	 Patch	 dynamics	 may	 dominate	 metacom-
munity	 dynamics	 under	 these	 conditions	 (Winemiller,	 Flecker,	 &	
Hoeinghaus,	2010).	Conversely,	habitats	in	lower	reaches	are	much	
less	 isolated	 with	 greater	 potential	 for	 dispersal,	 conditions	 that	
should	 facilitate	 species	 sorting	 and	 the	mass	 effect.	 Community	
structure	 along	 river	 longitudinal	 gradients	 also	 could	be	 affected	
by	the	unidirectional	flow	of	water.	Datry	et	al.	(2016)	inferred	that	
species	diversity	increases	from	upstream	to	downstream	due	to	the	
combined	effect	of	headwater	isolation	and	water	flow	limiting	up-
stream	dispersal.

Relatively	 few	 investigations	 have	 examined	 metacommunity	
patterns	along	longitudinal	fluvial	gradients	(Almeida	&	Cetra,	2016;	
Carvajal-	Quintero	 et	al.,	 2015;	 Datry	 et	al.,	 2016;	 Vitorino-	Júnior	
et	al.,	2016),	and	even	less	research	has	been	conducted	in	relatively	
pristine	 rivers	with	 catchments	 lacking	 significant	human	 impacts.	
Knowledge	 gained	 from	unperturbed	 systems	 enables	 predictions	
about	 future	 impacts	 to	 biodiversity,	 and	 can	 help	 to	 guide	 con-
servation	and	restoration	efforts	for	rivers	that	have	already	been	
degraded.

We	investigated	spatial	variation	in	fish	assemblage	structure	
along	 the	 longitudinal	 fluvial	gradient	of	 the	Bita	River,	 a	nearly	
pristine	 tributary	 of	 the	 Orinoco	 River	 in	 the	 Llanos	 region	 of	
Colombia.	We	analysed	fish	species	distributions	across	the	longi-
tudinal	gradient	in	an	effort	to	reveal	relative	influences	of	abiotic	
environmental	 and	 spatial	 factors,	 and	 to	 infer	metacommunity	
models	that	may	account	for	patterns.	We	predicted	that,	at	the	
basin-	scale,	dispersal	rates	are	sufficiently	 low	to	allow	local	as-
semblages	 to	 track	 spatial	 environmental	 variation	 (e.g.	 species	
sorting),	with	a	major	fraction	of	variation	in	structure	explained	
by	a	pure	environmental	effect	(Heino,	Melo,	&	Bini,	2015;	Heino,	
Melo,	 Siqueira,	 et	al.,	 2015).	 Given	 that	 environmental	 condi-
tions	 should	 have	 greater	 variation	 over	 broader	 spatial	 scales,	
metacommunity	 patterns	 should	 reveal	 high	 turnover	 and	 fairly	
discrete	 local	 assemblages	with	a	Clementsian	distribution.	At	 a	
more	regional	scale	(localities	within	a	river	section),	assemblages	
in	upstream	and	downstream	regions	may	reflect	different	meta-
community	processes.	Because	headwater	streams	are	relatively	
isolated	within	the	river	network,	 they	should	receive	fewer	mi-
grants	and	may	have	local	assemblages	strongly	influenced	by	local	
environmental	 conditions	 and	 species	 sorting.	 Metacommunity	
patterns	 of	 headwaters	 should	 reveal	 high	 turnover,	 with	 three	
possible	 distributional	 patterns:	 Clementsian,	 Gleasonian,	 or	
evenly	spaced.	Conversely,	 sites	 located	downstream	and	closer	
to	the	river	mouth	should	be	influenced	by	high	dispersal,	result-
ing	in	a	greater	importance	of	spatial	factors	and	the	mass	effect.	
In	 the	 downstream	 section,	 in-	channel	 environmental	 variation	
will	be	lower,	and	metacommunity	patterns	may	be	nested	along	
the	longitudinal	gradient.

2  | METHODS

2.1 | Study area

The	Bita	River	Basin	is	located	in	the	eastern	plains	of	the	Colombian	
Llanos	 in	 the	Vichada	department,	draining	an	area	of	812,312	ha	
flowing	east	roughly	700	km	to	the	Orinoco	River.	As	in	most	natural	
drainage	systems,	stream	environmental	characteristics	 in	the	Bita	
Basin	vary	along	the	longitudinal	gradient.	Most	headwater	streams	
begin	at	an	elevation	of	300	m	above	sea	level.	The	middle	and	lower	
sections	are	 characterised	by	a	broad,	 sinuous	channel	 and	 flood-
plains	with	numerous	lagoons	and	seasonally	flooded	forests	and	sa-
vannas.	The	average	elevational	gradient	is	low	(0.357	m/km),	with	
the	river	entering	the	Orinoco	River	at	an	elevation	of	50	m	above	
sea	 level	 near	 the	 municipality	 of	 Puerto	 Carreño.	 Riparian	 veg-
etation	is	comprised	of	dense	gallery	forests	dominated	by	Caraipa 
llanorum	 (Calophyllaceae),	 Astrocaryum jauari	 (Arecaceae),	 and	
Parahancornia oblonga	 (Apocynaceae),	 and	 savannas	dominated	by	
Axonopus anceps,	Panicum cayennense	 (Poaceae),	Bulbostylis capilla-
ris,	Cyperus haspan,	Rhynchospora cephalotes,	(Cyperaceae),	Caladium 
macrotites	 (Araceae),	 and	 C. llanorum	 (Calophyllaceae)	 (Trujillo	 &	
Lasso,	2017).	The	main	river	and	streams	contain	multiple	habitats	
that	vary	mainly	 in	substrate	composition,	riparian	vegetation,	and	
depth.	During	May–November,	the	river	floods	adjacent	areas	cre-
ating	complex	and	diverse	habitats.	Average	air	temperature	in	the	
region	 is	27°C,	and	average	annual	precipitation	 is	2,300	mm	with	
most	rainfall	from	May	to	August	(Trujillo	&	Lasso,	2017).

Two	field	expeditions,	each	of	which	 lasted	30	days,	were	per-
formed	during	January	and	March	2016	when	low-	water	conditions	
facilitate	efficient	capture	of	fishes	and	relationships	between	fish	
assemblage	structure	and	habitat	should	be	strongest	(Pease	et	al.,	
2012).	We	selected	34	survey	sites	distributed	along	the	entire	basin	
(E1	uppermost	to	E34	lowest)	following	the	river’s	longitudinal	gra-
dient	(Supporting	Information	Table	S1).	The	basin	was	divided	into	
four	sections	(high,	mid–high,	mid–low,	low)	using	the	linear	distance	
of	the	basin	(265	km)	divided	it	by	the	number	of	sections	(four).	This	
value	(66.5	km)	was	used	to	define	the	distance	between	each	sec-
tion	along	the	longitudinal	gradient	(Figure	1).

2.2 | Fish surveys

At	 each	 survey	 site,	we	 selected	 a	 200-	m	 reach	 encompassing	 all	
apparent	macrohabitats	to	collect	fishes	and	data	for	local	environ-
mental	 variables.	 Fishes	 were	 collected	 using	 a	 seine	 (10	×	1.5	m,	
3-	mm	mesh)	and	two	gill	nets	(10	×	2	m,	100-	mm	mesh).	Within	each	
study	reach,	six	seine	hauls	of	20	m	were	performed,	and	the	gill	net	
was	deployed	 for	2	hr.	After	 fishes	were	 removed	 from	nets,	 they	
were	 anaesthetised	 according	 to	 an	 approved	 Texas	A&M	univer-
sity	animal	use	protocol	 (IACUC	2015-	0360)	by	 immersion	 in	 tric-
aine	 methane	 sulfonate	 (MS-	222)	 and	 euthanised	 in	 an	 overdose	
of	MS-	222.	Specimens	were	 fixed	 in	10%	formalin,	 transported	 to	
the	laboratory,	and	transferred	to	70%	ethanol	for	preservation.	All	
specimens	were	identified,	catalogued	and	deposited	in	the	voucher	
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collections	of	the	Universidad	del	Tolima	and	Instituto	von	Humboldt	
in	Colombia.

2.3 | Environmental variables

Environmental	variables	were	divided	into	six	categories:	water	pa-
rameters,	 substrate,	 instream	 cover,	 channel	morphology,	 local	 ri-
parian	buffer,	and	landscape	variables	following	Pease	et	al.	(2012)	
(Supporting	Information	Table	S2).	Prior	to	fish	sampling,	water	qual-
ity	 parameters,	 such	 as	 pH,	 conductivity	 (μS),	 water	 temperature	
(°C),	dissolved	oxygen	(mg/L)	and	total	solids,	were	measured	at	each	
survey	site	using	a	multiparameter	water	quality	meter	 (YSI	model	
85).	 To	 characterise	 substrate	 and	 instream	cover,	 the	percentage	
of	 cobble	 (diameter	6–25	cm),	 sand	 (0.06–2	mm),	mud	 (<0.06	mm),	
filamentous	algae,	large	woody	debris	(>50	cm),	small	woody	debris	
(<50	cm),	submerged	roots,	overhanging	terrestrial	material,	and	leaf	
litter	were	visually	estimated	along	the	200-	m	reach.	Variables	such	
as;	width	of	riparian	buffer	(m),	area	of	the	riparian	forest	(ha),	and	
landscape	(presence	of	roads,	crops,	distance	to	the	Orinoco	River	
and	altitude)	were	measured	by	georeferenced	satellite	images	using	

ArcMap	 (Version	10.3.1)	 in	a	circular	buffer	of	1	km.	Stream	order	
was	calculated	using	the	function	stream	order	in	ArcMap	(Version	
10.3.1)	method	Strahler’s	classification.

2.4 | Data analysis

Analyses	 were	 performed	 at	 basin	 (number	 of	 sites	=	34)	 and	 re-
gional	 scales.	 Regional-	scale	 datasets	 were	 grouped	 according	 to	
four	sections	along	the	longitudinal	fluvial	gradient	(high,	mid–high,	
mid–low,	 low).	This	approach	aimed	 to	explore	 the	possibility	 that	
environmental	 or	 spatial	 variation	within	 river	 sections	 influences	
assemblage	 patterns	 according	 to	metacommunity	 processes	 that	
may	 differ	 among	 sections.	 Using	 the	 method	 of	 Dufrene	 and	
Legendre	 (1997),	 we	 calculated	 indicator	 values	 for	 species	 most	
common	within	a	given	river	section.	This	method	is	based	on	spe-
cies	abundance	(specificity)	and	frequency	(fidelity)	at	survey	sites.	
Values	from	this	method	range	from	0	to	1,	with	1	being	a	perfect	
indicator	 of	 a	 river	 section.	 Significance	 of	 indicator	 values	 was	
evaluated	using	the	difference	between	the	observed	value	and	the	
mean	of	values	obtained	from	1,000	random	permutations.	Species	

F IGURE  1   Map	of	the	Bita	River	Basin	showing	the	four	sections	and	the	34	survey	sites
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indicator	 analysis	was	 performed	 using	 the	 function	 Indval	 of	 the	
package	labdsv	(Roberts,	2007)	in	the	R	statistical	language	(Version	
3.4.1)	(R	Core	Team,	2017).

2.5 | Spatial variables

Because	fish	dispersal	in	rivers	is	difficult	to	estimate,	we	used	spa-
tial	 predictors	 as	 proxies	 for	 dispersal	 potential.	 Spatial	 eigenvec-
tors	were	used	as	predictors	 to	 control	 for	 spatial	 autocorrelation	
and	estimate	 the	 influence	of	 spatial	distance	on	 species	distribu-
tions	and	patterns	of	assemblage	structure	(Peres-	Neto	&	Legendre,	
2010).	 Spatial	 patterns	were	modelled	 through	 asymmetric	 eigen-
vector	maps	 (AEM),	an	approach	proposed	by	Blanchet,	Legendre,	
and	Borcard	(2008b).	This	method	takes	into	account	the	directional	
aspect	of	inter-	site	distances	of	systems	such	as	river	networks	(e.g.	
water	flow,	relative	position),	a	 limitation	of	methods	such	as	prin-
cipal	 coordinates	 of	 neighbour	 matrices	 and	 Moran’s	 eigenvector	
maps	(Blanchet,	Legendre,	Maranger,	Monti,	&	Pepin,	2011;	Sharma,	
Legendre,	De	Cáceres,	&	Boisclair,	2011).

To	 perform	 the	AEM,	we	 used	 the	 distribution	 of	 sites	 across	
the	basin	to	construct	a	connection	diagram	that	links	sites	to	one	
another	according	 to	pathways	within	 the	 river	network	 (Figure	1,	
Supporting	Information	Table	S3)	following	the	flow	direction	from	
upstream	to	downstream.	Using	the	connection	diagram,	a	sites-	by-	
edges	matrix	was	constructed,	and	this	matrix	was	used	to	calculate	
asymmetrical	spatial	eigenfunctions	through	singular	value	decom-
position,	which	were	used	 later	as	spatial	descriptors.	AEM	eigen-
functions	were	calculated	using	the	function	aem	from	the	package	
adespatial	 in	R	 (Version	3.4.1)	 (Dray	et	al.,	2017).	To	obtain	an	ad-
ditional	 spatial	 descriptor,	we	measured	 the	watercourse	 distance	
as	 the	distance	 from	each	point	 to	 the	 river	mouth	along	 the	wa-
tercourse	using	georeferenced	satellite	 images	 in	ArcMap	(Version	
10.3.1).	This	variable	is	more	relevant	to	fish	dispersal	than	straight-	
line	distance	that	includes	overland	segments	(albeit	such	dispersal	
routes	are	possible	during	the	annual	flood	pulse).

2.6 | Elements of the metacommunity structure

Using	the	sites-	by-	species	 incidence	matrix	 (excluding	rare	species	
that	occurred	at	only	one	site)	as	input	for	RA,	EMS	were	analysed	
based	on	species	scores	on	the	first	two	axes.	To	evaluate	patterns	
with	respect	to	six	idealised	distributional	patterns:	(1)	checkerboard	
(Diamond,	1975),	 (2)	nested	subsets	 (Patterson	&	Atmar,	1986),	 (3)	
Clementsian	 (Clements,	 1916),	 (4)	 Gleasonian	 (Gleason,	 1926),	 (5)	
evenly	spaced	(Tilman,	1982),	and	(6)	random	(Simberloff,	1983),	we	
followed	the	framework	proposed	by	Leibold	and	Mikkelon	(2002)	
and	Presley	et	al.	(2010).

Coherence	was	assessed	by	calculating	the	number	of	gaps	in	
species	range	(observed	absences)	from	the	ordered	matrix	from	
RA.	Statistical	significance	of	coherence	was	evaluated	using	the	
z-	score	 test	 comparing	 observed	 absences	with	 those	 expected	
based	on	1,000	randomised	simulations.	Whenever	observed	ab-
sences	are	greater	than	expected	(negative	coherence),	there	is	a	

checkerboard	pattern.	Conversely,	 if	observed	absences	are	 less	
than	expected	under	the	null	model	(positive	coherence),	the	anal-
ysis	 tests	 for	evidence	of	species	turnover	and	boundary	clump-
ing.	 No	 significant	 difference	 between	 observed	 and	 expected	
absences	 indicates	 random	distributions	 (no	 coherence)	 (Leibold	
&	Mikkelson,	2002).

Turnover	was	evaluated	by	calculating	the	number	of	species	
replacements	between	sites.	We	used	a	z-	score	 test	 to	compare	
observed	 species	 replacements	 with	 the	 mean	 for	 species	 re-
placements	 obtained	 from	 1,000	 null	 simulations.	 Significantly	
fewer	observed	replacements	are	 indicative	of	 low	turnover	and	
distributions	that	are	nested	subsets,	whereas	more	observed	re-
placements	indicate	high	turnover.	Finally,	boundary	clumping	was	
evaluated	using	Morisita’s	index,	for	which	a	value	of	one	indicates	
that	boundaries	are	not	clumped,	values	<1	indicate	clumping,	and	
<1	indicates	hyperdispersion.	Statistical	significance	of	Morisita’s	
index	was	determined	using	the	χ2	 test.	More	 information	about	
inference	 of	 idealised	 patterns	 can	 be	 found	 in	 fig.	1	 of	 Presley	
et	al.	(2010).

We	applied	a	fixed	proportional	null	model	(i.e.	r1 null model in 
Metacommunity	function	in	R)	to	test	significance	of	coherence	and	
turnover.	This	null	model	maintains	species	richness	of	each	sampling	
site,	 but	 fills	 species	 ranges	 based	 on	 their	marginal	 probabilities.	
Random	simulated	matrices	were	calculated	using	1,000	simulations	
(Dallas,	2014).	EMS	were	assessed	using	the	Metacommunity func-
tion	of	the	Metacom	package	(Dallas,	2014)	in	R.

2.7 | Variation partitioning

We	used	variation	partitioning	analysis	(Peres-	Neto	et	al.,	2006)	as	
an	additional	means	to	identify	metacommunity	types	and	to	assess	
the	relative	contribution	of	environmental	and	spatial	predictors	on	
fish	distributions	at	basin	and	regional	scales.	This	method	allowed	
us	 to	 determine	 the	 contribution	 of	 environmental	 conditions	 in-
dependent	of	space,	and	vice versa,	controlling	for	type	I	error	as	a	
product	of	spatial	autocorrelation	in	the	environmental	component	
(Peres-	Neto	&	Legendre,	2010).	Type	 I	 error	may	 lead	 to	 spurious	
conclusions,	 generating	 significant	 species–environment	 relation-
ships	 that	are	artefacts.	Partitioning	analysis	was	conducted	using	
the	 adjusted	 R-	squared	 in	 redundancy	 analysis	 on	 the	 Hellinger-	
transformed	species-	by-	sites	abundance	matrix	and	two	sets	of	pre-
dictors;	environment	[E]	and	space	[S].

To	 create	 each	 set	 of	 predictors,	 first,	we	 reduced	 the	 num-
ber	of	variables	in	each	matrix,	because	they	reduce	the	statistical	
power	of	the	test	to	identify	unique	and	significant	environmental	
and	spatial	contributions	(Peres-	Neto	&	Legendre,	2010).	We	per-
formed	a	variable	selection	for	each	set	of	predictors	to	 identify	
significant	variables	(p	<	.05)	associated	with	the	species-	by-	sites	
abundance	matrix.	For	the	[E]	matrix,	we	transformed	the	environ-
mental	variables	due	to	nonhomogeneous	units	and	verified	that	
the	distribution	was	normal.	Those	variables	expressed	as	propor-
tions	were	transformed	to	the	arcsine	of	their	square	root.	The	re-
maining	variables	were	log(x	+	1)	transformed,	with	the	exception	
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of	ordinal	 and	categorical	data	 for	which	no	 transformation	was	
done.	 Data	 for	 all	 variables	 were	 standardised	 and	 centred	 by	
calculating	 z-	scores	 (mean	=	0;	 standard	 deviation	=	1)	 (Borcard,	
Gillet,	&	Legendre,	2011;	Falke	&	Fausch,	2010).	The	function	for-
ward.sel	from	the	R	library	adespatial	(Dray	et	al.,	2017)	was	used	
to	perform	variable	selection	using	999	permutations	with	a	sig-
nificance level of p	=	.05.	Selected	variables	comprised	the	envi-
ronmental	matrix	[E]	used	for	the	partition	analysis.

Spatial	 predictors	 from	 the	 AEM	 analysis	 and	 inter-	site	 dis-
tance	data	were	tested	for	inclusion	in	the	spatial	matrix	[S]	using	
the	forward.sel	function	of	the	R	library	adespatial,	using	the	same	
approach	as	described	for	the	[E]	matrix.	Selected	variables	were	
included	in	the	[S]	matrix	for	the	partitioning	analysis.	Finally,	with	
our	three	datasets	(Hellinger-	transformed	sites-	by-	species	matrix,	
[E]	and	 [S]),	we	applied	 the	varpart	 function	of	 the	vegan	 library	
in	 R	 to	 perform	 variation	 partitioning	 analysis	 as	 proposed	 by	
Blanchet,	Legendre,	and	Borcard	(2008a)	and	Borcard	et	al.	(2011).

The	significance	levels	of	the	components	produced	by	the	vari-
ation	 partitioning	 were	 used	 to	 classify	 the	 fish	 metacommunity	
according	 to	 one	 of	 the	 four	 metacommunity	 paradigms;	 species	
sorting,	 mass	 effect,	 neutral	 model	 and	 patch	 dynamics	 (Leibold	
et	al.,	2004).	To	choose	the	proper	paradigm,	we	applied	the	decision	
tree	proposed	by	Cottenie	(2005).

2.8 | Drivers of metacommunity structure

We	 used	 two	 approaches	 to	 identify	 the	 underlying	 environmen-
tal	and	spatial	factors	that	correlate	with	observed	patterns	 in	the	
metacommunity	organisation	at	 the	basin	and	regional	 level.	First,	
we	calculated	Spearman-	rank	correlations	between	the	two	domi-
nant	axes	extracted	from	the	RA	used	 in	 the	EMS	framework	and	
each	variable	from	the	set	of	environmental	and	spatial	predictors.	
Second,	 a	 variable	 selection	 procedure	 was	 performed	 for	 each	
group	 (environmental	and	spatial)	using	the	 forward.sel	 function	of	
the	R	library	adespatial.	Correlations	were	calculated	using	the	func-
tion	cor.test	of	the	stats	library	in	R.

3  | RESULTS

High	 and	 mid–high	 sections	 were	 characterised	 by	 higher	 values	
of	dissolved	oxygen,	elevation,	distance	 from	the	main	source,	sa-
vanna	area,	flow,	and	percentages	of	grasses	and	filamentous	algae	
(Supporting	 Information	 Table	 S2).	 Channel	 width,	 water	 tem-
perature,	 and	 total	 solids	 tended	 to	be	 lower	 at	upper-	basin	 sites.	
Substratum	and	instream	cover	were	heterogeneous	within	all	four	
sections.	Sites	located	in	the	lower	sections	tended	to	have	more	ex-
tensive	riparian	forest,	more	lagoons	in	adjacent	floodplains,	wider	
channels,	and	lower	flow	velocity	(Supporting	Information	Table	S2).

A	 total	 of	 25,928	 fish	 specimens,	 representing	 201	 species,	 39	
families,	and	10	orders,	were	collected	during	the	study.	Sixty	species	
were	collected	in	the	high	section,	148	in	the	mid–high,	142	in	the	mid–
low,	and	67	in	the	low	section.	Average	number	of	specimens	per	site	

was	762,	and	species	richness	varied	from	4	to	55.	The	most	abundant	
species	were	Amazonprattus scintilla	(Engraulidae)	and	two	species	of	
the	genus	Hemigrammus	(Characidae),	H. elegans and H. geisleri.	These	
three	species	represented	nearly	30%	of	the	collected	fish	specimens	
(Supporting	 Information	 Table	 S4).	 Fifty-	one	 rare	 species	 were	 col-
lected	at	single	sites.	Several	species	were	identified	as	indicators	for	
the	 low	 (12	spp.)	and	high	 (six	spp.)	 sections,	and	few	or	none	were	
identified	for	the	mid–high	(one	sp.)	and	low	(0	sp.)	sections	(Table	1).

3.1 | Elements of metacommunity structure

At	the	basin	scale	(34	sites),	the	EMS	revealed	positive	coherence	with	
a	Clementsian	distribution	along	both	of	 the	dominant	axes	model-
ling	 gradients	of	 fish	 assemblage	 structure	 (RA1	and	RA2)	 (Table	2,	
Figure	2).	Thus,	at	a	broad	spatial	scale,	species	seem	to	respond	as	
groups	to	environmental	factors,	leading	to	relatively	discrete	assem-
blages	along	the	longitudinal	gradient.	The	Clementsian	pattern	iden-
tified	 for	RA1	was	positively	 correlated	with	channel	width,	 stream	
order	and	spatial	predictors	(AEM21,	AEM25),	and	negatively	corre-
lated	with	variables	associated	to	substrate,	instream	cover	and	local	
riparian	vegetation	(Table	3).	For	RA2,	only	the	spatial	predictor	AEM1	
(positive)	and	flow	(negative)	were	correlated	with	site	scores	(Table	3).

Metacommunity	structure	was	analysed	for	sites	within	each	
of	 the	 four	sections	along	the	 longitudinal	 fluvial	gradient	 (high,	
mid–high,	mid–low	and	low).	Assemblages	in	the	high	and	low	sec-
tions	had	negative	coherence	and	a	random	pattern	for	both	RA	
axes	 in	 the	high	section	and	RA1	 in	 the	 low	section;	RA2	 in	 the	

TABLE  1 Summary	of	the	indicator	species	analysis	for	each	
section	in	the	Bita	Basin

Species Section Indicator value

Hemigrammus schmardae High 0.59

Parotocinclus eppleyi High 0.40

Ammocryptocharax elegans High 0.40

Farlowella vittata High 0.38

Mastiglanis asopos High 0.37

Phenacorhamdia anisura High 0.35

Steindachnerina argentea Mid–high 0.48

Nannostomus unifasciatus Low 0.89

Microphilypnus ternetzi Low 0.84

Hemigrammus elegans Low 0.83

Apistogramma minima Low 0.66

Brittanichthys	sp Low 0.61

Curimatopsis evelynae Low 0.60

Hemigrammus analis Low 0.60

Acaronia vultuosa Low 0.59

Hemigrammus rhodostomus Low 0.58

Ochmacanthus alternus Low 0.58

Acestrorhynchus minimus Low 0.57

Hemigrammus barrigonae Low 0.33

Only	species	with	statistically	significant	values	(p	<	0.05)	are	listed.
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TABLE  2   Results	of	EMS	analysis	of	fish	metacommunity	structure	at	the	level	of	the	entire	Bita	Basin	and	at	the	regional	level	for	high,	
mid–high,	mid–low	and	low	sections	of	the	river

Axis of variation Basin High Mid–high Mid–low Low

Species 145 37 84 85 55

Sites 34 5 12 14 3

Primary	axis

Coherence

Observed	absences 2,506 55 318 453 14

Expected	absences 3,032 41 445 554 14

p-value <0.001 0.127 <0.001 0.001 0.9

Turnover

Observed	replacements 347,752 543 20,498 27,534 630

Expected	replacements 186,586 624 14,397 20,631 621

p-	value <0.001 0.15 <0.001 <0.001 0.89

Clumping

Morisita’s	index 1.58 1.02 1.37 1.14 1

p-	value <0.001 0.17 <0.001 <0.001 >0.999

Best-	fit	patterns Clementsian Random Clementsian Clementsian Random

Secondary	axis

Coherence

Observed	absences 2,706 40 383 541 22

Expected	absences 3,030 40.32 447 557 13

p-	value 0.001 0.96 0.03 0.64 0.007

Turnover

Observed	replacements 366,210 597 19,630 14,070 377

Expected	replacements 186,480 622 14,397 20,697 541

p-	value <0.001 0.65 <0.001 <0.001 0.004

Clumping

Morisita’s	index 1.55 1.36 1.37 1.17 1

p-	value <0.001 0.004 <0.001 <0.001 >0.999

Best-	fit	patterns Clementsian Random Clementsian Random Nested	
distribution

Statistically	significant	values	(p	<	0.05)	are	shown	in	bold	type.

F IGURE  2   Species	distributions	
among	34	sites	in	the	Bita	Basin	ordered	
according	to	scores	on	the	first	axis	of	
the	reciprocal	averaging,	revealing	a	
Clementsian	gradient.	Sites	are	in	rows;	
species	are	in	columns

E16
E8
E7

E17
E24
E30
E20
E10
E18
E33
E27
E31
E9

E26
E2
E1

E12
E4
E5

E25
E15
E34
E14
E21
E32
E22
E11
E23
E3

E13
E6

E29
E28
E19

Species

Absence
Presence



374  |     LÓPEZ- DELGADO Et AL.

low	section	revealed	a	nested	distribution.	No	significant	correla-
tions	between	assemblage	structure	and	environmental	or	spatial	
factors	were	found	for	the	high	and	low	sections	(Tables	2	and	3,	
Figure	3).

Mid–high	 and	 mid–low	 sections	 displayed	 Clementsian	 pat-
terns	 of	 assemblage	 structure	 for	 both	 the	 first	 and	 second	 RA	
axes.	 For	 the	 mid–high	 section,	 no	 significant	 correlations	 were	
obtained	 between	 RA1	 and	 environmental	 or	 spatial	 variables,	
however,	RA2	was	positively	correlated	with	the	presence	of	roads	
and	the	spatial	predictor	AEM1	(Tables	2	and	3,	Figure	3).	For	the	
mid–low	section,	RA1	was	positively	correlated	with	substrate	and	
instream	cover	and	RA2	with	the	spatial	predictor	AEM1	(Tables	2	
and	3,	Figure	3).

3.2 | Variation partitioning analysis

At	the	basin	scale,	all	the	components	from	variation	partitioning	(E,	
S,	E+S,	E|S,	S|E)	explained	significant	(p	<	.05)	variation	in	fish	assem-
blage	structure,	supporting	the	idea	that	metacommunity	dynamics	
influence	patterns	at	 that	 scale	 (Table	4).	Around	19%	of	 the	 total	
explained	variation	 (E+S)	was	modelled	by	the	combined	 influence	
of	environment	and	spatial	predictors,	6.9%	by	a	pure	environmental	
component	(E|S),	and	4.6%	by	a	pure	spatial	component	(S|E).	Eighty-	
one	percent	of	the	variation	was	unexplained.	Environmental	varia-
tion	at	the	basin	scale	was	significantly	influenced	by	percentage	of	

mud	substrate,	small	woody	debris,	and	water	conductivity	(Table	4).	
Only	four	of	33	spatial	predictors	were	significant	(AEM1,	AEM,	16,	
AEM18,	AEM21;	Table	4).

At	the	regional	scale,	the	number	of	sites	within	the	high	and	
low	 sections	 was	 too	 small	 for	 statistical	 analysis,	 and	 only	 the	
mid–high	 and	 mid–low	 sections	 were	 analysed.	 Only	 the	 envi-
ronmental	 component	 (E)	 explained	 significant	 variation	 in	 fish	
assemblage	structure	within	each	of	these	sections	(Table	4),	indi-
cating	that	it	was	not	possible	to	infer	any	metacommunity	model.	
In	 the	mid–high	 section,	 a	 significant	 environmental	 component	
influenced	 most	 strongly	 by	 percentage	 of	 mud	 substrate	 and	
small	woody	debris	explained	16%	of	assemblage	variation.	In	the	
mid–low	 section,	 14%	of	 assemblage	 variation	was	 explained	by	
an	 environmental	 component,	with	 conductivity	 and	percentage	
of	small	woody	debris	most	influential.

3.3 | Drivers of fish community structure

The	 set	 of	 variables	 selected	 by	 variation	 partitioning	 included	
most	of	 the	ones	 that	had	highest	Spearman	 rank	correlations.	At	
the	 basin	 level,	 environmental	 variables	 related	 to	 substrate	 and	
instream	 cover	were	 identified	 by	 both	methods	 (Tables	3	 and	 4).	
Environmental	predictors,	such	as	percentages	of	mud	substrate	and	
small	woody	debris	and	the	spatial	predictor	AEM1,	were	significant	
at	both	basin	and	regional	scales	(Tables	3	and	4).

TABLE  3 Spearman-	rank	correlations	between	predictors	and	scores	obtained	from	the	first	two	axes	from	the	reciprocal	averaging	
ordination	of	the	sites-	by-	species	incidence	matrix	in	the	elements	of	metacommunity	structure	framework

Variables

Basin Mid–high Mid–low

r p r p r p

Primary	axis

	(%)	Mud −0.55 <0.01 0.61 0.02

	(%)	Large	woody	debris −0.48 <0.01

	(%)	Small	woody	debris −0.48 <0.01 0.55 0.04

	(%)	Submerged	roots −0.48 <0.01 0.61 0.02

	(%)	Stream	shaded	by	tree	canopy −0.47 <0.01 0.61 0.02

Width 0.37 0.03

Stream	order 0.52 <0.01

AEM21 0.39 0.02

AEM25 0.39 0.02

Secondary	axis

	(%)	Mud −0.71 0.01

	(%)	Large	woody	debris −0.66 0.02

	(%)	Small	woody	debris −0.75 <0.01

	(%)	Stream	shaded	by	tree	canopy −0.75 <0.01

Flow −0.47 <.01

Near	to	roads 0.66 0.02

AEM1 0.51 <.01 0.6 0.04 0.69 0.01

Only	statistically	significant	values	(p	<	0.05)	are	shown.	No	significant	correlations	were	found	for	high	and	low	sections.
AEM:	asymmetric	eigenvector	maps



     |  375LÓPEZ- DELGADO Et AL.

F IGURE  3   Species	distributions	within	four	river	sections	ordered	according	to	scores	on	the	first	reciprocal	axis
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Component

Bita basin Mid–high Mid–low

AdjR2 p AdjR2 p AdjR2 p

E 0.14 0.001 0.16 0.007 0.14 0.002

S 0.12 0.001 0.00 0.5 0.00 0.56

E+S 0.19 0.001 0.18 0.2 0.14 0.13

E|S 0.069 0.001 0.20 0.3 0.16 0.16

S|E 0.046 0.025 0.02 0.6 0.00 0.51

b 0.075

R 0.81 0.82 0.86

Variables	selected %Mud	[E] 
%Small	woody	
debris	[E] 
Conductivity	[E] 
AEM1	[S] 
AEM16	[S] 
AEM18	[S] 
AEM21	[S]

%Mud	[E] 
%Small	woody	
debris	[E]

Conductivity	[E] 
%Small	woody	
debris	[E]

AEM:	asymmetric	eigenvector	maps;	AdjR2:	adjusted	R2	for	the	percentage	of	variation;	E:	environ-
mental	variation;	S:	spatial	variation;	E+S:	Total	explained	variation;	E|S,	Pure	environmental	varia-
tion;	 S|E:	 Pure	 spatial	 variation;	 b:	 Variation	 shared	 by	 environmental	 and	 spatial	 factors;	
R:	Unexplained	variation	(residual).	Significant	values	(p	<	0.05)	are	shown	in	bold.

TABLE  4 Variation	partitioning	analysis	
for	fish	assemblages	and	selected	groups	
of	environmental	and	spatial	variables	at	
basin	and	regional	scales
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4  | DISCUSSION

In	 this	 study,	 we	 applied	 complementary	 statistical	 analyses	 to	
investigate	 fish	 species	 distributions	 and	 variation	 in	 assemblage	
structure	across	a	longitudinal	fluvial	gradient	to	reveal	the	relative	
influence	of	factors	associated	with	environmental	conditions	(e.g.	
habitat	 features,	 environmental	 filtering)	 and	 spatial	 relationships	
influencing	dispersal.	Results	from	these	analyses	provided	a	basis	
to	infer	the	relative	influence	of	biotic	 interactions	and	stochastic	
processes	in	community	assembly	at	two	spatial	scales.	Our	results	
suggest	 that	 the	 fish	metacommunity	 in	 the	Bita	River	 exhibits	 a	
Clementsian	distribution,	implying	that	species	respond	to	the	en-
vironmental	 and	 fluvial	 gradient	 as	 groups	 with	 fairly	 consistent	
compositions	 (Clements,	1916).	This	pattern	also	 implies	a	poten-
tial	effect	of	environmental	filtering	at	the	scale	of	the	entire	basin.	
Similarly,	the	variation	partitioning	analysis	showed	that	the	varia-
tion	 explained	by	 the	 pure	 environmental	 component	was	 higher	
than	the	pure	spatial	component,	which	also	is	consistent	with	spe-
cies	sorting.	Species	sorting	occurs	when	organisms	select	habitats	
that	 convey	 relatively	high	 fitness,	 and/or	 avoid	or	 are	otherwise	
eliminated	from	habitats	that	reduce	their	fitness	(Soininen,	2014).	
These	findings	support	our	prediction	that,	at	the	basin	scale,	dis-
persal	rates	are	low	and	assemblage	structure	is	strongly	influenced	
by	species	sorting.

Our	regional-	scale	results	also	revealed	a	Clementsian	distribu-
tion	of	local	assemblage	composition.	This	pattern	could	have	been	
caused	by	species	responses	to	spatial	variation	of	abiotic	and	biotic	
environmental	factors.	Spearman	correlation	between	environmen-
tal	variables	and	site	scores	on	gradients	of	assemblage	variation	in-
dicated	that	stream	order	and	channel	size	had	strong	associations	
with	local	assemblage	structure.	Variables	associated	with	substrate	
composition	 and	 instream	 cover	 also	 had	 significant	 associations.	
Fishes	 in	 the	Bita	River	 apparently	 respond	 to	 these	environmen-
tal	variables	as	relatively	clumped	groups.	Clementsian	assemblage	
structure	 has	 been	 found	 in	 plants	 (Meynard	 et	al.,	 2013;	 Willig	
et	al.,	2011),	mammals	(López-	González,	Presley,	Lozano,	Stevens,	&	
Higgins,	 2012;	Presley	&	Willig,	 2010),	 and	various	 freshwater	or-
ganisms,	including	plankton,	macroinvertebrates,	and	fish	(Dallas	&	
Drake,	2014;	Erős	et	al.,	2017;	Fernandes,	Henriques-	Silva,	Penha,	
Zuanon,	&	Peres-	Neto,	2014;	Tonkin,	Stoll,	Jähnig,	&	Haase,	2016;	
Torres	&	Higgins,	2016).

We	proposed	 that	 some	metacommunity	 processes	 and	 resul-
tant	patterns	would	not	be	the	same	at	two	different	spatial	scales	
of	analysis.	We	found	positive	coherence	and	turnover	in	upstream	
regions,	and	positive	coherence	and	negative	turnover	with	nested	
distributions	in	downstream	regions.	These	patterns	were	not	pre-
dicted	a priori.	At	the	regional	scale,	a	Clementsian	distribution	was	
found	only	in	the	mid–high	and	mid–low	sections	of	the	basin,	sug-
gesting	 that	 species	 responded	 as	 groups	 to	 environmental	 filters	
more	 strongly	 in	 these	 middle	 sections	 of	 longitudinal	 gradient.	
Assemblage	 coherence	 was	 non-	significant	 (i.e.	 not	 statistically	
different	 from	 a	 random	 distribution)	 for	 the	 high	 and	 low	 sec-
tions	of	the	river.	According	to	Presley	et	al.	(2010),	non-	significant	

coherence	 is	 not	 always	 an	 indicator	of	 random	structures.	Dallas	
and	Drake	(2014)	found	that	in	most	studies	in	which	random	pat-
terns	were	found,	samples	contained	few	species,	few	sites,	or	both,	
and	 therefore	 there	was	 not	 enough	 statistical	 power	 to	 test	 co-
herence	using	 randomisation	procedures.	 In	our	study,	 there	were	
fewer	survey	sites	for	the	highest	and	lowest	sections	of	the	river,	
which	may	account	for	non-	significant	coherence	in	those	sections.	
Nonetheless,	Figure	3	reveals	a	pattern	of	species	distribution	with	
high	 turnover	 and	 boundary	 clumping	 in	 the	 high	 section;	 such	 a	
	pattern	is	less	discernible	for	the	low	section.

In	the	low	section	of	the	river,	distribution	patterns	were	differ-
ent	 for	 the	 two	assemblage	ordination	axes.	Random	distributions	
were	 inferred	based	on	 the	 first	ordination	axis	and	nested	distri-
butions	were	found	for	the	second	axis.	Results	of	the	second	axis	
support	 our	 hypothesis	 that	 environmental	 gradients	 over	 smaller	
spatial	 scales	 in	 the	 low	 section	may	 promote	 nested	 distribution	
patterns.	Sites	in	this	section	were	characterised	by	substrates	com-
prised	 almost	 entirely	 of	 sand	with	 patches	 of	 leaf	 litter	 and	 low	
variation	 in	water	 physicochemistry.	Distribution	 patterns	may	 be	
more	likely	to	be	nested	when	sample	size	is	small	and	environmen-
tal	gradients	are	short	(Tonkin	et	al.,	2016).	Conversely,	large	sample	
sizes	and	long	environmental	gradients	may	increase	the	likelihood	
of	finding	Clementsian	and	Gleasonian	patterns.

At	 the	 basin	 scale,	 the	 total	 variation	 in	 assemblage	 structure	
captured	by	the	model	(19%)	was	decomposed	into	6.9%	purely	en-
vironmental,	 7.5%	 shared	 by	 environmental	 and	 spatial,	 and	 4.6%	
purely	spatial	components	(each	fraction	with	p	<	0.001).	The	pure	
environmental	 component	 was	 strongly	 associated	 with	 the	 per-
centage	 of	 mud	 substrate,	 small	 woody	 debris,	 and	 conductivity.	
Shared	environmental	and	spatial	factors	also	were	associated	with	
the	percentage	of	mud	and	conductivity.	The	pure	 spatial	 compo-
nent	was	 represented	 by	 eigenvectors	 from	AEM,	 predictors	 that	
are	 not	 easily	 interpretable	 because	 they	 integrate	 multiple	 spa-
tial	 scales	 (Peres-	Neto	&	 Legendre,	 2010),	with	 small-	scale	 spatial	
variables	 tending	 to	be	associated	with	mass	effect	dynamics	 and	
large-	scale	spatial	variables	tending	to	be	associated	with	dispersal	
limitation	 (Heino,	Melo,	&	Bini,	2015;	Heino,	Melo,	Siqueira,	et	al.,	
2015).	 At	 the	 scale	 of	 the	 entire	 basin,	 both	 processes	 probably	
occur	simultaneously.

The	percentage	of	variation	explained	by	our	partitioning	anal-
ysis	was	 low	(19%),	a	common	finding	 in	community	ecology	stud-
ies	 (Castillo-	Escrivà	 et	al.,	 2016;	 Devercelli,	 Scarabotti,	 Mayora,	
Schneider,	 &	 Giri,	 2016;	 Erős	 et	al.,	 2017;	 Legendre	 &	 Legendre,	
2012;	Ter	Braak	&	Šmilauer,	2012).	The	large	amount	of	unexplained	
variation	could	be	due	to	several	factors,	such	as	failure	to	include	
other	 relevant	 environmental	 variables	 and	 spatial	 predictors	 or	
variables	related	to	other	processes	such	as	biotic	 interactions.	Of	
course,	there	also	could	be	a	large	influence	of	stochastic	dynamics.	
Soininen	(2016)	reviewed	322	datasets	and	found	that	spatial	predic-
tors	obtained	from	spatial	eigenvector	analysis	generally	explained	
a	small	 fraction	of	 total	assemblage	variation,	which	suggests	 that	
spatial	predictors	 from	AEM	may	perform	poorly	 in	capturing	pat-
terns	reflecting	dispersal	dynamics.	Monteiro	et	al.	(2017)	proposed	
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the	use	of	patch	connectivity	metrics	as	predictors	of	dispersal	dy-
namics	rather	than	spatial	eigenvectors.	They	found	that	the	patch	
connectivity	framework	increased	the	amount	of	explained	variation	
by	as	much	as	50%.

Because	both	pure	environmental	and	pure	spatial	components	
were	 statistically	 significant,	 both	 species	 sorting	and	mass	effect	
dynamics	 could	 have	 influenced	 fish	 assemblage	 structure	 at	 the	
basin	 scale	 (Cottenie,	 2005).	 However,	 because	 the	 proportion	
explained	 by	 the	 pure	 environmental	 fraction	was	 larger	 than	 the	
spatial	fraction	(6.9%	versus	4.6%),	species	sorting	was	probably	the	
more	influential	component	structuring	fish	assemblages	in	this	sys-
tem.	These	results	are	in	accordance	with	Heino,	Melo,	&	Bini	(2015),	
who	found	that	an	intermediate	amount	of	dispersal	was	needed	for	
the	species	sorting	process,	since	species	need	to	disperse	from	one	
place	 to	another,	 searching	 for	sites	with	 the	appropriate	environ-
mental	conditions	to	thrive.

Soininen	(2014)	reviewed	326	investigations	that	used	variation	
partitioning	 analysis,	 finding	 that	 environmental	 variables	 usually	
explained	the	most	variation	in	assemblage	composition	and	species	
sorting	was	most	often	inferred.	Species	sorting	may	be	the	preva-
lent	metacommunity	model	 for	 river	 and	 stream	 fish	 assemblages	
(Cottenie,	2005;	Falke	&	Fausch,	2010;	Heino,	Melo,	&	Bini,	2015;	
Heino,	Melo,	Siqueira,	et	al.,	2015).

At	 a	 smaller	 spatial	 scale,	 we	 predicted	 that	 species	 sorting	
strongly	 influences	assemblages	 in	headwaters	where	habitats	are	
relatively	isolated	within	the	river	network,	whereas	assemblages	in	
downstream	reaches	would	have	greater	dispersal	and	be	more	in-
fluenced	by	mass	effect	dynamics.	These	predictions	were	not	con-
firmed.	Based	on	variation	partitioning	analysis	and	the	decision	tree	
of	Cottenie	(2005),	no	evidence	was	obtained	to	support	any	of	the	
metacommunity	 paradigms	proposed	by	 Leibold	 et	al.	 (2004).	 The	
variation	 partitioning	 procedure	 could	 only	 be	 performed	 for	 the	
mid–high	and	mid–low	sections	that	had	sufficiently	large	samples.	
Only	the	environmental	fraction	was	significant,	and	this	result	can	
be	prone	to	type	I	error.

In	summary,	variation	partitioning	and	metacommunity	structure	
analyses	provided	complementary	findings	to	infer	processes	struc-
turing	fish	assemblages	in	the	Bita	River.	Both	approaches	identified	
environmental	filtering	and	species	sorting	as	the	principal	structur-
ing	processes	in	this	system.	Variation	partitioning	analysis	implied	
that	dispersal	plays	a	significant	role	at	the	basin	scale;	however,	the	
environmental	fraction	explained	more	variation.	Both	analyses	re-
vealed	assemblage	patterns	correlated	with	components	of	habitat	
structure.	Similar	conclusions	have	been	reported	from	studies	con-
ducted	 at	 smaller	 spatial	 scales	 in	other	 tropical	 rivers	 (Arrington,	
Winemiller,	&	Layman,	2005;	Willis,	Winemiller,	&	Lopez-	Fernandez,	
2005),	with	 some	 also	 inferring	 that	 biotic	 interactions	play	 a	 sig-
nificant	 role	 in	 structuring	 fish	 assemblages	 within	 local	 habitats	
(Montaña,	Winemiller,	&	Sutton,	2014).	 In	a	study	of	 the	Cinaruco	
River,	an	Orinoco	tributary	in	the	Venezuelan	Llanos	with	character-
istics	similar	to	the	Bita	River,	Willis	et	al.	(2005)	found	that	habitat	
structural	 complexity	 was	 strongly	 correlated	 with	 the	 functional	
diversity	 of	 fish	 assemblages.	 These	 findings	 combined	with	 ours,	

suggest	 that	 fish	 community	 structure	 of	 Neotropical	 rivers	 and	
streams	 is	 influenced	by	 local	environmental	conditions,	especially	
aspects	associated	with	substrate	and	habitat	structural	complexity,	
that	 in	 turn	affect	 species	 sorting	 that	 results	 in	Clementsian	pat-
terns	of	species	distribution.	 Improved	understanding	of	 the	 influ-
ence	of	dispersal,	environmental	filtering	and	biotic	interactions	on	
species	assemblages	in	pristine	systems	will	be	essential	for	efforts	
to	conserve	and	restore	biodiversity.	For	example,	if	the	spatial	dis-
tribution	of	fishes	in	the	Bita	River	derives	largely	from	dispersal	and	
environmental	 filtering,	 then	 strategies	 to	 conserve	 fish	 diversity	
must	emphasise	maintenance	of	habitat	heterogeneity	and	connec-
tivity	at	appropriate	spatial	and	temporal	scales.

ACKNOWLEDG MENTS

We	thank	World	Wildlife	Foundation	(WWF)	Colombia,	Fundación	
Omacha,	Instituto	de	Investigación	de	Recursos	Biológicos	Alexander	
von	Humboldt	and	Universidad	del	Tolima	for	logistics	and	financing	
part	of	 this	 study.	We	also	would	 like	 to	 thank	D.	Taphorn,	C.	Do	
Nascimento,	J.G.	Albornoz	and	D.	Montoya	for	their	assistance	in	the	
field	and	laboratory	work.

ORCID

Edwin O. López-Delgado  https://orcid.org/0000-0002-4010-1880 

R E FE R E N C E S

Almeida,	R.	S.,	&	Cetra,	M.	(2016).	Longitudinal	gradient	effects	on	the	
stream	 fish	metacommunity.	Natureza & Conservação,	14,	 112–119.	
https://doi.org/10.1016/j.ncon.2016.10.001

Arrington,	D.	A.,	Winemiller,	K.	O.,	&	Layman,	C.	A.	(2005).	Community	
assembly	at	the	patch	scale	in	a	species	rich	tropical	river.	Oecologia,	
144,	157–167.	https://doi.org/10.1007/s00442-005-0014-7

Blanchet,	F.	G.,	Legendre,	P.,	&	Borcard,	D.	 (2008a).	Forward	selection	 
of	 explanatory	 variables.	 Ecology,	 89,	 2623–2632.	 https://doi.org/ 
10.1890/07-0986.1

Blanchet,	F.	G.,	Legendre,	P.,	&	Borcard,	D.	(2008b).	Modelling	directional	
spatial	processes	 in	ecological	data.	Ecological Modelling,	215,	325–
336.	https://doi.org/10.1016/j.ecolmodel.2008.04.001

Blanchet,	F.	G.,	Legendre,	P.,	Maranger,	R.,	Monti,	D.,	&	Pepin,	P.	(2011).	
Modelling	 the	 effect	 of	 directional	 spatial	 ecological	 processes	 at	
different	 scales.	Oecologia,	166,	 357–368.	 https://doi.org/10.1007/
s00442-010-1867-y

Borcard,	D.,	Gillet,	 F.,	&	 Legendre,	 P.	 (2011).	Numerical ecology with R. 
New	York:	Springer.	https://doi.org/10.1007/978-1-4419-7976-6	

Brown,	 B.	 L.,	 &	 Swan,	 C.	 M.	 (2010).	 Dendritic	 network	 structure	 
constrains	 metacommunity	 properties	 in	 riverine	 ecosystems.	 
Journal of Animal Ecology,	 79,	 571–580.	 https://doi.org/10.1111/ 
j.1365-2656.2010.01668.x

Carvajal-Quintero,	 J.	 D.,	 Escobar,	 F.,	 Alvarado,	 F.,	 Villa-Navarro,	 F.	 A.,	
Jaramillo-Villa,	Ú.,	&	Maldonado-Ocampo,	J.	A.	 (2015).	Variation	 in	
freshwater	 fish	 assemblages	 along	 a	 regional	 elevation	 gradient	 in	
the	northern	Andes,	Colombia.	Ecology and Evolution,	5,	2608–2620.	
https://doi.org/10.1002/ece3.1539

Carvalho,	 R.	 A.,	 &	 Tejerina-Garro,	 F.	 L.	 (2015).	 The	 influence	 of	 en-
vironmental	 variables	 on	 the	 functional	 structure	 of	 headwa-
ter	 stream	 fish	 assemblages:	 A	 study	 of	 two	 tropical	 basins	 in	

https://orcid.org/0000-0002-4010-1880
https://orcid.org/0000-0002-4010-1880
https://doi.org/10.1016/j.ncon.2016.10.001
https://doi.org/10.1007/s00442-005-0014-7
https://doi.org/10.1890/07-0986.1
https://doi.org/10.1890/07-0986.1
https://doi.org/10.1016/j.ecolmodel.2008.04.001
https://doi.org/10.1007/s00442-010-1867-y
https://doi.org/10.1007/s00442-010-1867-y
https://doi.org/10.1007/978-1-4419-7976-6
https://doi.org/10.1111/j.1365-2656.2010.01668.x
https://doi.org/10.1111/j.1365-2656.2010.01668.x
https://doi.org/10.1002/ece3.1539


378  |     LÓPEZ- DELGADO Et AL.

Central	 Brazil.	 Neotropical Ichthyology,	 13,	 349–360.	 https://doi.
org/10.1590/1982-0224-20130148

Castillo-Escrivà,	 A.,	 Rueda,	 J.,	 Zamora,	 L.,	 Hernández,	 R.,	 Del	 Moral,	
M.,	 &	Mesquita-Joanes,	 F.	 (2016).	 The	 role	 of	 watercourse	 versus	
overland	 dispersal	 and	 niche	 effects	 on	 ostracod	 distribution	 in	
Mediterranean	streams	(eastern	Iberian	Peninsula).	Acta Oecologica,	
73,	1–9.	https://doi.org/10.1016/j.actao.2016.02.001

Chase,	J.	M.,	Kraft,	N.	J.,	Smith,	K.	G.,	Vellend,	M.,	&	Inouye,	B.	D.	(2011).	
Using	null	models	to	disentangle	variation	in	community	dissimilarity	
from	variation	in	α-	diversity.	Ecosphere,	2,	1–11.

Clements,	 F.	 E.	 (1916).	Plant succession: An analysis of the development 
of vegetation.	Washington,	DC:	Carnegie	Institution	of	Washington.	
https://doi.org/10.5962/bhl.title.56234

Cottenie,	 K.	 (2005).	 Integrating	 environmental	 and	 spatial	 processes	
in	 ecological	 community	 dynamics.	 Ecology Letters,	 8,	 1175–1182.	
https://doi.org/10.1111/j.1461-0248.2005.00820.x

Dallas,	 T.	 (2014).	 metacom:	 An	 R	 package	 for	 the	 analysis	 of	 meta-
community	 structure.	 Ecography,	 37,	 402–405.	 https://doi.
org/10.1111/j.1600-0587.2013.00695.x

Dallas,	T.,	&	Drake,	J.	M.	(2014).	Relative	importance	of	environmental,	
geographic,	and	spatial	variables	on	zooplankton	metacommunities.	
Ecosphere,	5,	1–13.

Datry,	T.,	Melo,	A.	S.,	Moya,	N.,	Zubieta,	J.,	De	La	Barra,	E.,	&	Oberdorff,	
T.	(2016).	Metacommunity	patterns	across	three	Neotropical	catch-
ments	with	varying	environmental	harshness.	Freshwater Biology,	61,	
277–292.	https://doi.org/10.1111/fwb.12702

Devercelli,	M.,	Scarabotti,	P.,	Mayora,	G.,	Schneider,	B.,	&	Giri,	F.	(2016).	
Unravelling	 the	 role	 of	 determinism	 and	 stochasticity	 in	 struc-
turing	 the	 phytoplanktonic	 metacommunity	 of	 the	 Paraná	 River	
floodplain.	 Hydrobiologia,	 764,	 139–156.	 https://doi.org/10.1007/
s10750-015-2363-5

Diamond,	 J.	M.	 (1975).	Assembly	of	 species	 communities.	 In	Martin	L.	
Cody	and	Jared	M.	Diamond,	editors,	Ecology and evolution of com-
munities	(pp.	342–444).	Cambridge,	Mass:	Belknap	Press	of	Harvard	
University	Press.

Dray,	S.,	Blanchet,	G.,	Borcard,	D.,	Guenard,	G.,	Jombart,	T.,	Larocque,	
G.,	…	Wagner,	H.	H.	(2017).	adespatial:	Multivariate	multiscale	spatial	
analysis.	R	package	version	0.0,	9.

Dufrene,	M.,	&	Legendre,	P.	 (1997).	Species	assemblages	and	 indicator	
species:	 The	 need	 for	 a	 flexible	 asymmetrical	 approach.	Ecological 
Monographs,	67,	345–366.

Erős,	 T.	 (2017).	 Scaling	 fish	 metacommunities	 in	 stream	 networks:	
Synthesis	and	future	research	avenues.	Community Ecology,	18,	72–
86.	https://doi.org/10.1556/168.2017.18.1.9

Erős,	 T.,	 Takács,	 P.,	 Specziár,	 A.,	 Schmera,	D.,	 &	 Sály,	 P.	 (2017).	 Effect	
of	 landscape	context	on	fish	metacommunity	structuring	in	stream	
networks.	Freshwater Biology,	62,	215–228.	https://doi.org/10.1111/
fwb.12857

Falke,	J.	A.,	&	Fausch,	K.	D.	(2010).	From	metapopulations	to	metacom-
munities:	 linking	 theory	with	 empirical	 observations	 of	 the	 spatial	
population	dynamics	of	stream	fishes.	In	American	Fisheries	Society	
Symposium	(Vol.	73,	pp.	207–233).

Fernandes,	I.	M.,	Henriques-Silva,	R.,	Penha,	J.,	Zuanon,	J.,	&	Peres-Neto,	
P.	R.	(2014).	Spatiotemporal	dynamics	in	a	seasonal	metacommunity	
structure	 is	 predictable:	 The	 case	 of	 floodplain-	fish	 communities.	
Ecography,	37,	464–475.

Gleason,	 H.	 A.	 (1926).	 The	 individualistic	 concept	 of	 the	 plant	 asso-
ciation.	 Bulletin of the Torrey Botanical Club,	 53,	 7–26.	 https://doi.
org/10.2307/2479933

Heino,	 J.,	Melo,	A.	S.,	&	Bini,	L.	M.	 (2015).	Reconceptualising	 the	beta	
diversity-	environmental	 heterogeneity	 relationship	 in	 running	
water	 systems.	 Freshwater Biology,	 60(2),	 223–235.	 https://doi.
org/10.1111/fwb.12502

Heino,	J.,	Melo,	A.	S.,	Siqueira,	T.,	Soininen,	J.,	Valanko,	S.,	&	Bini,	L.	M.	
(2015).	 Metacommunity	 organisation,	 spatial	 extent	 and	 dispersal	

in	 aquatic	 systems:	 Patterns,	 processes	 and	 prospects.	 Freshwater 
Biology,	60,	845–869.	https://doi.org/10.1111/fwb.12533

Landeiro,	 V.	 L.,	 Magnusson,	 W.	 E.,	 Melo,	 A.	 S.,	 Espírito-Santo,	 H.	 M.	
V.,	 &	 Bini,	 L.	 M.	 (2011).	 Spatial	 eigenfunction	 analyses	 in	 stream	
networks:	 Do	 watercourse	 and	 overland	 distances	 produce	 dif-
ferent	 results?	 Freshwater Biology,	 56,	 1184–1192.	 https://doi.
org/10.1111/j.1365-2427.2010.02563.x

Legendre,	P.,	Legendre,	L.,	&	Legendre,	P.	(2012).	Numerical ecology. 3rd 
English	ed.	Pierre	Legendre	and	Louis	Legendre.	Amsterdam,	Boston:	
Elsevier.

Leibold,	M.	A.,	Holyoak,	M.,	Mouquet,	N.,	Amarasekare,	P.,	Chase,	J.	M.,	
Hoopes,	M.	F.,	…	Gonzalez,	A.	(2004).	The	metacommunity	concept:	
A	framework	for	multi-	scale	community	ecology.	Ecology Letters,	7,	
601–613.	https://doi.org/10.1111/j.1461-0248.2004.00608.x

Leibold,	M.	A.,	&	Mikkelson,	G.	M.	(2002).	Coherence,	species	turnover,	
and	 boundary	 clumping:	 Elements	 of	 meta-	community	 structure.	
Oikos,	 97,	 237–250.	 https://doi.org/10.1034/j.1600-0706.2002. 
970210.x

Logue,	 J.	 B.,	 Mouquet,	 N.,	 Peter,	 H.,	 Hillebrand,	 H.,	 &	 The	
Metacommunity	Working	Group	 (2011).	Empirical	 approaches	 to	
metacommunities:	 A	 review	 and	 comparison	with	 theory.	Trends 
in Ecology & Evolution,	 26,	 482–491.	 https://doi.org/10.1016/j.
tree.2011.04.009

López-González,	C.,	Presley,	S.	J.,	Lozano,	A.,	Stevens,	R.	D.,	&	Higgins,	C.	
L.	(2012).	Metacommunity	analysis	of	Mexican	bats:	Environmentally	
mediated	structure	 in	an	area	of	high	geographic	and	environmen-
tal	 complexity.	 Journal of Biogeography,	 39,	 177–192.	 https://doi.
org/10.1111/j.1365-2699.2011.02590.x

Macarthur,	R.,	&	Levins,	R.	 (1967).	The	 limiting	similarity,	convergence,	
and	divergence	of	coexisting	species.	The American Naturalist,	101,	
377–385.	https://doi.org/10.1086/282505

Meynard,	 C.	 N.,	 Lavergne,	 S.,	 Boulangeat,	 I.,	 Garraud,	 L.,	 Van	 Es,	 J.,	
Mouquet,	N.,	&	Thuiller,	W.	(2013).	Disentangling	the	drivers	of	meta-
community	 structure	 across	 spatial	 scales.	 Journal of Biogeography,	
40,	1560–1571.	https://doi.org/10.1111/jbi.12116

Montaña,	C.	G.,	Winemiller,	K.	O.,	&	Sutton,	A.	(2014).	Intercontinental	
comparison	of	fish	ecomorphology:	Null	model	tests	of	community	
assembly	 at	 the	patch	 scale	 in	 rivers.	Ecological Monographs,	84(1),	
91–107.	https://doi.org/10.1890/13-0708.1

Monteiro,	V.	F.,	Paiva,	P.	C.,	&	Peres-Neto,	P.	R.	 (2017).	A	quantitative	
framework	 to	 estimate	 the	 relative	 importance	 of	 environment,	
spatial	 variation	 and	 patch	 connectivity	 in	 driving	 community	
composition.	 Journal of Animal Ecology,	 86,	 316–326.	 https://doi.
org/10.1111/1365-2656.12619

Mouillot,	 D.,	 Dumay,	 O.,	 &	 Tomasini,	 J.	 A.	 (2007).	 Limiting	 similarity,	
niche	filtering	and	functional	diversity	in	coastal	lagoon	fish	commu-
nities.	Estuarine, Coastal and Shelf Science,	71,	443–456.	https://doi.
org/10.1016/j.ecss.2006.08.022

Patterson,	 B.	 D.,	 &	 Atmar,	 W.	 (1986).	 Nested	 subsets	 and	 the	
structure	 of	 insular	 mammalian	 faunas	 and	 archipelagos.	
Biological Journal of the Linnean Society,	 28,	 65–82.	 https://doi.
org/10.1111/j.1095-8312.1986.tb01749.x

Pease,	 A.	 A.,	 González-Díaz,	 A.	 A.,	 Rodiles-Hernández,	 R.,	 &	
Winemiller,	 K.	 O.	 (2012).	 Functional	 diversity	 and	 trait–environ-
ment	 relationships	 of	 stream	 fish	 assemblages	 in	 a	 large	 tropi-
cal	 catchment.	 Freshwater Biology,	 57,	 1060–1075.	 https://doi.
org/10.1111/j.1365-2427.2012.02768.x

Peres-Neto,	 P.	 R.,	 &	 Legendre,	 P.	 (2010).	 Estimating	 and	 con-
trolling	 for	 spatial	 structure	 in	 the	 study	 of	 ecological	 commu-
nities.	 Global Ecology and Biogeography,	 19,	 174–184.	 https://doi.
org/10.1111/j.1466-8238.2009.00506.x

Peres-Neto,	P.	R.,	Legendre,	P.,	Dray,	S.,	&	Borcard,	D.	(2006).	Variation	
partitioning	of	species	data	matrices:	Estimation	and	comparison	of	
fractions.	Ecology,	87,	2614–2625.	https://doi.org/10.1890/0012-96
58(2006)87[2614:vposdm]2.0.co;2

https://doi.org/10.1590/1982-0224-20130148
https://doi.org/10.1590/1982-0224-20130148
https://doi.org/10.1016/j.actao.2016.02.001
https://doi.org/10.5962/bhl.title.56234
https://doi.org/10.1111/j.1461-0248.2005.00820.x
https://doi.org/10.1111/j.1600-0587.2013.00695.x
https://doi.org/10.1111/j.1600-0587.2013.00695.x
https://doi.org/10.1111/fwb.12702
https://doi.org/10.1007/s10750-015-2363-5
https://doi.org/10.1007/s10750-015-2363-5
https://doi.org/10.1556/168.2017.18.1.9
https://doi.org/10.1111/fwb.12857
https://doi.org/10.1111/fwb.12857
https://doi.org/10.2307/2479933
https://doi.org/10.2307/2479933
https://doi.org/10.1111/fwb.12502
https://doi.org/10.1111/fwb.12502
https://doi.org/10.1111/fwb.12533
https://doi.org/10.1111/j.1365-2427.2010.02563.x
https://doi.org/10.1111/j.1365-2427.2010.02563.x
https://doi.org/10.1111/j.1461-0248.2004.00608.x
https://doi.org/10.1034/j.1600-0706.2002.970210.x
https://doi.org/10.1034/j.1600-0706.2002.970210.x
https://doi.org/10.1016/j.tree.2011.04.009
https://doi.org/10.1016/j.tree.2011.04.009
https://doi.org/10.1111/j.1365-2699.2011.02590.x
https://doi.org/10.1111/j.1365-2699.2011.02590.x
https://doi.org/10.1086/282505
https://doi.org/10.1111/jbi.12116
https://doi.org/10.1890/13-0708.1
https://doi.org/10.1111/1365-2656.12619
https://doi.org/10.1111/1365-2656.12619
https://doi.org/10.1016/j.ecss.2006.08.022
https://doi.org/10.1016/j.ecss.2006.08.022
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1111/j.1365-2427.2012.02768.x
https://doi.org/10.1111/j.1365-2427.2012.02768.x
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2
https://doi.org/10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2


     |  379LÓPEZ- DELGADO Et AL.

Presley,	 S.	 J.,	 Higgins,	 C.	 L.,	 &	Willig,	 M.	 R.	 (2010).	 A	 comprehensive	
framework	 for	 the	 evaluation	 of	metacommunity	 structure.	Oikos,	
119,	908–917.	https://doi.org/10.1111/j.1600-0706.2010.18544.x

Presley,	 S.	 J.,	 &	 Willig,	 M.	 R.	 (2010).	 Bat	 metacommunity	 structure	 on	 
Caribbean	 islands	 and	 the	 role	 of	 endemics.	 Global Ecology and  
Biogeography,	19,	185–199.	https://doi.org/10.1111/j.1466-8238.2009. 
00505.x

R	Core	Team.	 (2017).	R: A language and environment for statistical com-
puting.	 Vienna,	 Austria:	 R	 Foundation	 for	 Statistical	 Computing.	
Retrieved	from	http://www.R-project.org/.	

Roberts,	D.	W.	 (2007).	 labdsv:	Ordination	and	multivariate	analysis	 for	
ecology.	R package version,	1(1).

Sharma,	S.,	Legendre,	P.,	De	Cáceres,	M.,	&	Boisclair,	D.	(2011).	The	role	
of	environmental	and	spatial	processes	in	structuring	native	and	non-	
native	 fish	 communities	 across	 thousands	 of	 lakes.	 Ecography,	 34,	
762–771.	https://doi.org/10.1111/j.1600-0587.2010.06811.x

Simberloff,	D.	(1983).	Competition	theory,	hypothesis-	testing,	and	other	
community	ecological	buzzwords.	The American Naturalist,	122,	626–
635.	https://doi.org/10.1086/284163

Soininen,	 J.	 (2014).	 A	 quantitative	 analysis	 of	 species	 sorting	 across	
organisms	 and	 ecosystems.	 Ecology,	 95,	 3284–3292.	 https://doi.
org/10.1890/13-2228.1

Soininen,	J.	(2016).	Spatial	structure	in	ecological	communities—A	quan-
titative	 analysis.	 Oikos,	 125,	 160–166.	 https://doi.org/10.1111/
oik.02241

Ter	Braak,	C.,	&	Šmilauer,	P.	 (2012).	Canoco reference manual and user’s 
guide: Software for ordination (version 5.0).	Ithaca,	NY:	Microcomputer	
Power.

Tilman,	 D.	 (1982).	 Resource competition and community structure. 
Princeton,	N.J.:	Princeton	University	Press.

Tonkin,	 J.	 D.,	 Stoll,	 S.,	 Jähnig,	 S.	 C.,	 &	 Haase,	 P.	 (2016).	 Elements	 of	
metacommunity	 structure	 of	 river	 and	 riparian	 assemblages:	
Communities,	 taxonomic	 groups	 and	 deconstructed	 trait	 groups.	
Ecological Complexity,	 25,	 35–43.	 https://doi.org/10.1016/j.
ecocom.2015.12.002

Torres,	K.	M.	M.,	&	Higgins,	C.	L.	 (2016).	Taxonomic	and	functional	or-
ganization	in	metacommunity	structure	of	stream-	fish	assemblages	
among	and	within	river	basins	in	Texas.	Aquatic Ecology,	50,	247–259.	
https://doi.org/10.1007/s10452-016-9572-5

Trujillo,	F.,	&	Lasso,	C.	A.	(2017).	IV.	Biodiversidad	del	río	Bita,	Vichada,	
Colombia.	 Serie	 Editorial	 Fauna	 Silvestre	 Neotropical	 (p.	 349).	
Bogota,	Colombia:	Instituto	de	Investigación	de	Recursos	Biológicos	
Alexander	von	Humboldt,	Fundación	Omacha.

Vitorino-Júnior,	O.	B.,	Fernandes,	R.,	Agostinho,	C.	S.,	&	Pelicice,	F.	M.	
(2016).	 Riverine	 networks	 constrain	 β-	diversity	 patterns	 among	
fish	assemblages	in	a	large	Neotropical	river.	Freshwater Biology,	61,	
1733–1745.	https://doi.org/10.1111/fwb.12813

Willig,	 M.	 R.,	 Presley,	 S.	 J.,	 Bloch,	 C.	 P.,	 Castro-Arellano,	 I.,	 Cisneros,	
L.	 M.,	 Higgins,	 C.	 L.,	 &	 Klingbeil,	 B.	 T.	 (2011).	 Tropical	 metacom-
munities	 along	 elevational	 gradients:	 Effects	 of	 forest	 type	 and	
other	 environmental	 factors.	 Oikos,	 120,	 1497–1508.	 https://doi.
org/10.1111/j.1600-0706.2011.19218.x

Willis,	S.,	Winemiller,	K.,	&	Lopez-Fernandez,	H.	 (2005).	Habitat	struc-
tural	complexity	and	morphological	diversity	of	fish	assemblages	in	
a	Neotropical	floodplain	river.	Oecologia,	142,	284–295.	https://doi.
org/10.1007/s00442-004-1723-z

Winemiller,	K.	O.,	Flecker,	A.	S.,	&	Hoeinghaus,	D.	 J.	 (2010).	Patch	dy-
namics	and	environmental	heterogeneity	in	lotic	ecosystems.	Journal 
of the North American Benthological Society,	29,	 84–99.	 https://doi.
org/10.1899/08-048.1

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	López-Delgado	EO,	Winemiller	KO,	
Villa-Navarro	FA.	Do	metacommunity	theories	explain	spatial	
variation	in	fish	assemblage	structure	in	a	pristine	tropical	
river?	Freshw Biol. 2019;64:367–379. https://doi.org/10.1111/
fwb.13229

https://doi.org/10.1111/j.1600-0706.2010.18544.x
https://doi.org/10.1111/j.1466-8238.2009.00505.x
https://doi.org/10.1111/j.1466-8238.2009.00505.x
http://www.R-project.org/
https://doi.org/10.1111/j.1600-0587.2010.06811.x
https://doi.org/10.1086/284163
https://doi.org/10.1890/13-2228.1
https://doi.org/10.1890/13-2228.1
https://doi.org/10.1111/oik.02241
https://doi.org/10.1111/oik.02241
https://doi.org/10.1016/j.ecocom.2015.12.002
https://doi.org/10.1016/j.ecocom.2015.12.002
https://doi.org/10.1007/s10452-016-9572-5
https://doi.org/10.1111/fwb.12813
https://doi.org/10.1111/j.1600-0706.2011.19218.x
https://doi.org/10.1111/j.1600-0706.2011.19218.x
https://doi.org/10.1007/s00442-004-1723-z
https://doi.org/10.1007/s00442-004-1723-z
https://doi.org/10.1899/08-048.1
https://doi.org/10.1899/08-048.1
https://doi.org/10.1111/fwb.13229
https://doi.org/10.1111/fwb.13229

