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Abstract Streams of protected areas should be

subjected to less environmental degradation than
surrounding areas and consequently support greater

aquatic biodiversity. To test this, 186 environmental

and landscape variables were measured in 34 streams
within the Caxiuanã National Forest (CNF) and its

surrounding zone in the eastern Amazon.We expected
that streams inside the CNF protected area would have

more riparian forest cover and large woody debris

(LWD) that increase instream habitat complexity and
aquatic biodiversity. Several environmental variables

differed between streams in the CNF and surrounding

zone; however, the major difference was greater

LWD, leaf litter, and channel depth in CNF streams.
Richness of fish, Chironomidae, EPT (Ephe-

meroptera ? Plecoptera ? Trichoptera), and all-

groups combined were positively associated with
LWD. Assemblage taxonomic composition was cor-

related with several variables, but most groups
revealed no clear differentiation between the two

areas. This lack of differentiation may be explained by

relatively minor environmental impacts in areas
surrounding the CNF given the region’s small human

population. The most notable impact to streams

outside of the CNF was removal of LWD to facilitate
boat passage. To conserve aquatic biodiversity, we

recommend expansion of protected areas and adoption

of policies governing land use in surrounding zones.
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Introduction

Rivers and streams provide important ecosystem

services supporting human needs, such as fish pro-
duction and nutrient cycling (MEA, 2005), and yet

they are among the most severely impacted ecosys-

tems worldwide (Malmqvist & Rundle, 2002). Small
streams and associated riparian habitats are particu-

larly vulnerable to a variety of human activities

(Mensing et al., 1998), with negative consequences for
global freshwater biodiversity (Dudgeon et al., 2006).

Impacts are particularly severe in the tropics, which

encompass the greatest proportion of the world’s
freshwater ecosystems (Vörösmarty et al., 2010) and

biodiversity (Agostinho et al., 2005). For example,

conversion of forest to oil palm plantations is impact-
ing streams in the Amazon, particularly within the

eastern region (Figueiredo et al., 2010). Associated

deforestation, nutrient runoff, and sedimentation lead
to changes in hydrology and water quality, which

ultimately result in changes in habitat structure and

biodiversity loss (Juen et al., 2016; Leal et al., 2016).
The Brazilian government established protected

areas within the Amazon region as a strategy to

mitigate human impacts on local ecosystems as well as
global climate (Ferreira et al., 2014; Correia et al.,

2016). Virtually all of these protected areas were

designed for conservation of forest biodiversity and
ecosystem services, with comparatively little consid-

eration of the Amazon’s aquatic biodiversity (Castello

et al., 2013). These protected areas generally experi-
ence less environmental degradation than surrounding

areas (Naughton-Treves et al., 2005; Soares-Filho

et al., 2010). The eastern Amazon has a large
indigenous population that exploits natural resources

for subsistence (Silveira & Quaresma, 2013). People

living near rivers, known locally as ‘‘ribeirinhos’’,
depend on streams for transportation and fishing.

Owing to new economic pressures, eastern Amazo-

nian streams are increasingly subjected to human
impacts, including deforestation, replacement of nat-

ural riparian vegetation with crops, pollution, and

channel dredging for boat transportation (de Faria
et al., 2017), all of which alter aquatic habitat and tend

to reduce species richness (Malacarne et al., 2016;

Leitão et al., 2018; Nicacio & Juen, 2018). An
effective means for assessing ecosystem impacts is

to compare areas affected by humans to reference

locations where such pressures are absent or minimal
(Leal et al., 2016;Martins et al., 2018), and these kinds

of evaluations are lacking for aquatic systems in the

Amazon.
The goal of the present study was to evaluate stream

habitat and biota inside a protected area for compar-

ison with streams in the surrounding area that has been
impacted by human activities, including logging and

subsistence farming (Monteiro-Júnior et al., 2016; de

Faria et al., 2017; Nicacio & Juen, 2018). We
hypothesized that streams inside the natural reserve

have more riparian cover and woody debris that

increases structural complexity of instream habitat.
Since environmental features provide a template that

determines the suitability of stream habitat to support

aquatic biota (Poff &Ward, 1990; Casatti et al., 2006;
Nessimian et al., 2008; Juen et al., 2016), greater

aquatic biodiversity would be expected in streams

within the protected area due to greater availability of
ecological niches (Fahrig et al., 2011). Species

richness, species relative abundance and assemblage

composition are widely used indicators of ecosystem
status; and we evaluated relationships between envi-

ronmental factors and these aspects of fish and aquatic

insect assemblages at a local scale (Hooper et al.,
2005; Isbell et al., 2011). Lastly, we sought to identify

habitat variables potentially useful for future environ-

mental impact assessment and monitoring.

Materials and methods

Study area

Surveyed streams are located in the Caxiuanã National

Forest (CNF) and surrounding areas, and local water-
sheds have similar climate, geology, topography and
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vegetation (Behling & da Costa, 2000; Peel et al.,
2007). This forest reserve was established in 1961

(Federal Decree 239 of November 28, 1961) and is one

of the largest protected areas in the eastern Amazon.
The designation of ‘‘National Forest’’ allows sustain-

able exploitation of natural resources by local indige-

nous people (Federal Law no. 9985 of July 18, 2000).
The reserve surrounds the lower Anapu River between

the Tocantins and Xingu rivers, an area that encom-

passes the municipalities of Portel and Melgaço in
northeastern Pará State, Brazil (Fig. 1). The climate is

classified as tropical hot and humid Am type in the

Köppen scheme (Peel et al., 2007), with a dry season
from July to November and a rainy season between

December and June (Oliveira et al., 2008).

The local economy is based on exploitation of
natural resources, in particular timber that is processed

to make wood products (Verı́ssimo et al., 2006).

Several sawmills operate in the region, and an
estimated 100,000 trees are harvested each year from

the area surrounding the CNF (SFB & IMAZON,

2010). Local aquatic ecosystems are impacted by
logging that typically involves clear-cutting and

burning to clear land for agriculture (Moran, 2010),

such as palm plantations and cattle ranching (Homma,
2012). The municipality of Portel in the Marajó

Region is an important center for production of

charcoal and crops such as cassava, banana, corn,
and palm heart (Brasil, 2007).

Characteristics of rivers and streams in the CNF and

surrounding area differ from most Amazonian
streams, and this is largely due to the legacy of

Caxiuanã Bay. This bay was formed from a natural

impoundment of the Anapu River during the upper
Holocene when changes in climate, sea level and

tectonic activity restructured the basin’s geomorphol-

ogy and hydrology (Behling & da Costa, 2000). The
bay was subsequently filled with alluvium, and

contemporary streams have low gradients, and slow

current velocities (Behling & da Costa, 2000).

Data collection

We sampled 34 streams (see Table S1 for coordinates),

ranging from 1st to 3rd order (Strahler, 1957), during
the dry season (October–November 2012 and October

2013) to minimize seasonal effects on comparisons of

stream habitats (Peck et al., 2006). Seventeen streams
were located within the CNF, and 17 were in the

surrounding area to a distance of up to 60 km from the
reserve border. Streams that were sampled in the area

surrounding the CNF included local watersheds span-

ning a range of human impacts. A 150-m reach of each
stream was surveyed, which was subdivided into 15-m

longitudinal sections delineated by 11 cross-channel

transects. Survey protocols followed Kaufmann et al.
(1999) and Peck et al. (2006), and have been used

previously for Amazon streams (e.g. de Faria et al.,

2017; Benone et al., 2017; Ferreira et al., 2018).

Biological sampling

Fish assemblages were sampled using two circular

55-cm diameter sieve nets with 2-mm mesh. For each

15-m section, sampling effort was 18 min by each of
two collectors according to the protocol used by

Prudente et al. (2017) and Ferreira et al. (2018). Fish

were euthanized with lethal doses of anesthetic
(Eugenol) following the accepted protocol (Civil

House, Federal Law no. 11.794 of October 8, 2008),

then fixed in 10% formalin solution, and after 48 h
transferred to 70% ethanol. Fish specimens were

identified to the lowest feasible taxonomic level using

identification keys in the literature (e.g. Albert, 2001;
Reis et al., 2003; Van der Sleen & Albert, 2018)

complemented by guidance from expert ichthyolo-

gists. Voucher specimens were deposited in the
Ichthyological Collection of Museu Paraense Emı́lio

Goeldi (MPEG) in Belém, Brazil.

Following the protocol used by de Faria et al.
(2017) to survey aquatic insects, ten 15-m sections

were divided in three 5-m subunits, of which only the

first two were sampled. In each subunit, two samples
of substrate were collected with dip nets (18-cm

diameter and 250-lm mesh) to obtain specimens of

immature stages of Ephemeroptera, Plecoptera, Tri-
choptera and Chironomidae. Odonata adults were

sampled using a hand-held sweep net (40-cm diam-

eter, 65-cm deep, with a 90-cm aluminium handle)
(Monteiro-Júnior et al., 2016). Specimens of Ephe-

meroptera, Trichoptera, Plecoptera and Chironomidae
were sorted in the field and then fixed in 85% ethanol.

In the laboratory, specimens were identified using

published keys (e.g. Hamada & Couceiro, 2003; Pes
et al., 2005; Domı́nguez et al., 2006; Salles & Lima,

2014). Chironomid specimens were dried and

mounted onto slides with Hoyer’s solution according
to the methodology proposed by Trivinho-Strixino
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(2014) and identified to either genus or species level
with the use of taxonomic literature (Ferrington, 2008;

Trivinho-Strixino, 2014). Odonata specimens were

stored in paper envelopes for transport to the labora-
tory for identification using taxonomic keys (Lencioni,

2005; Garrison et al., 2006, 2010). Specimens were

stored in the Zoological Collection of the Ecology and
Conservation Laboratory at Universidade Federal do

Pará, Belém, Brazil.

Stream habitat

Stream habitat measurements and observations fol-
lowed the assessment protocol of the US Environ-

mental Protection Agency (Kaufmann et al., 1999;

Peck et al., 2006) and were performed at the same
locations as the fish and aquatic insect surveys.

Variables that represent habitat features, with empha-

sis on those most important for aquatic biota, were
analysed following procedures described by Kauf-

mann et al. (1999) and Barbour et al. (1999).

Habitat measurements were made within all cross-
channel transects and longitudinal sections in each of

the 34 streams, and values are reported as averages and

standard deviations for each stream (see Supplemen-
tary Material for a more complete description of

habitat measurements). Some metrics were combined

to form composite variables (see also Peck et al., 2006
and Kaufmann et al., 1999). 186 habitat measurements

were obtained, among which 27 were related to

channel morphology and hydraulics, 26 to substrate,
28 to cover for aquatic organisms, 60 to large woody

debris (LWD), 16 to riparian vegetation, and 29 to

human influences (see Supplementary Material
Tables S2, S3 and S4). A sequence of steps was

followed to reduce the number of variables for

analysis. First, variables with repeated values in
C 80% of samples (72 variables) were removed. After

that, 12 variables with low variability across streams

(i.e. coefficient of variation\ 10%) were removed.
From the remaining set of variables, redundant

variables were excluded among those with strong
correlations (Spearman correlation tests [ 0.7) (see

Supplementary Material Table S2) (73 variables). A

total of 29 variables remained, all of which are known
to be relevant for the ecology of fish and aquatic

insects in streams (Monteiro-Júnior et al., 2016;

Prudente et al., 2017; Ferreira et al., 2018; Nicacio
& Juen, 2018). Finally, a forward selection procedure

(Blanchet et al., 2008) was performed to reduce further
the number of variables, selecting only those metrics

that were significantly associated with local assem-

blages composition of each group. Prior to this
analysis, we standardized the environmental metrics

and log-transformed biological variables. After this

step, 11 environmental variables remained for subse-
quent analyses.

The retained variables were channel morphology

and hydraulics [mean thalweg depth and bankfull
width], substrate [percentage of fine substrate, per-

centage of wood, and percentage of roots], large

woody debris [LWD inside the channel—class 3
(medium to very large) and LWD above the channel—

class 3 (medium to very large); explanation of

combinations of wood diameter and length that define
size classes appears in Kaufmann et al. (1999)], cover

for aquatic organisms [mean overhanging vegetation

cover and leaf litter cover], riparian vegetation [mean
ground cover (\ 0.5 m height)], and human influences

[presence and proximity of human disturbances (for

example, crops, pasture, trash and logging)]. LWD
includes tree trunks with a minimum diameter

C 0.10 m and length C 1.5 m occurring either inside

the channel or near the channel margin where they can
affect water flow and channel morphology. Additional

details about environmental variable measurements

can be found in Juen et al. (2016) and de Faria et al.
(2017).

Data analysis

The selected set of environmental variables was used

to compare habitat between CNF and surrounding
streams. First, a principal components analysis (PCA)

was performed to decompose environmental variables

along orthogonal axes, or components, that identify
gradients (Peres-Neto et al., 2003). To reduce effects

of variables measured according to different units, all

variables were standardized (mean equal to 0 with
standard deviation equal to 1). We applied a permu-

tational multivariate analysis of variance (PERMA-
NOVA—Anderson, 2001) to the environmental

variables to verify the level of differentiation between

the habitat conditions of streams in CNF and habitat of
streams in the surrounding area. These analyses were

based on 9,999 permutations for the calculation of the

significance value using the Monte Carlo test
(P\ 0.05), with the assumption of homogeneity of
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dispersal being tested a priori by PERMDISP (Ander-
son, 2005).

For biological data, we first examined the potential

influence of spatial autocorrelation on aquatic biodi-
versity using data for species richness and local

assemblage composition. We calculated pairwise

fluvial distances among surveyed sites using QGIS
software (QGIS Development Team, 2017). We then

obtained spatial filters using principal coordinates of

neighbour matrices (PCNM—Dray et al., 2006) based
on the fluvial distance matrix, selecting only those

filters with Moran’s I[ 1 and P\ 0.05. We ran

multiple regression analysis and redundancy analysis
(RDA) between the spatial filters with species richness

and biological composition, respectively, for each

taxonomic group. Whenever the biological data
showed spatial autocorrelation, we extracted the

residuals for further analysis (Borcard et al., 2011).

Generalized linear models with forward stepwise
selection were used to analyse relationships of

explanatory variables (11 quantitative habitat vari-

ables plus one categorical variable [treatment]) on
species richness of fish, Chironomidae, Ephe-

meroptera, Plecoptera, and Trichoptera (EPT), and

Odonata, considering each of these taxa separately,
and then species richness of all four taxa combined.

For composition data, we ran principal coordinates

analysis PCoA) on each major taxonomic group and
selected the first two axes for analysis using GLMs.

All analyses were performed using the vegan

(Oksanen et al., 2018), packfor (Dray et al., 2011),
PCNM (Legendre et al., 2012), and MASS packages

(Venables and Ripley, 2002) in R (R Core Team,

2014).

Results

When compared with its surrounding areas, streams in

the CNF had higher percentage of wood substrate,
amounts of large woody debris inside the stream

channel and on the stream banks, greater leaf litter

cover, higher proportions of fine sediments, and
greater thalweg depth (Table 1, Fig. 2). There were

significant environmental differences between streams

in the CNF and the surrounding zone (PERMANOVA:
pseudo-F(1,33) = 3.35; P\ 0.01). The variances were

homogeneous among treatments (PERMDISP:

F(1,33) = 1.44; P = 0.24), indicating that treatments
had similar levels of environmental heterogeneity.

Effect of stream habitat on aquatic biodiversity

A total of 194 aquatic species and 25,384 individuals

were recorded, of which 136 species (11,941

Table 1 Variables used to assess stream habitat within the Caxiuanã National Forest and its surrounding zone and their PCA axis
loadings (LWD is large woody debris)

Variables Abbreviation PCA 1 PCA 2

Thalweg depth (cm) Thal 0.67 0.45

Bankfull width (m) Bank 0.53 - 0.36

Fine sediment (%) Fines - 0.69 0.45

Wood (%) Wood 0.69 0.00

Live trees or roots (%) Roots 0.39 0.06

LWD inside the channel (pieces/reach)—class 3 (medium to very large) LWDin 0.03 0.79

LWD above the channel (pieces/reach)—class 3 (medium to very large) LWDab - 0.32 0.71

Ground-layer vegetation cover (ground-layer woody cover ? ground-layer herbaceous cover) Ground 0.52 0.41

Overhanging vegetation cover Veget 0.36 0.25

Leaf litter cover Leaf 0.61 - 0.20

Total human impact (proximity-weighted sum) Human - 0.40 - 0.50

Eigenvalue 2.88 2.19

Explanation (%) 26.10 20.00

Cumulative explanation (%) 26.10 46.10

Variables in bold are[ 0.6
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Table 2 Results of the
GLM analysis with a
forward selection procedure

Habitat variables and
treatment were included as
explanatory variables, while
the response variables were
the species richness for each
biological group and total
species richness. Variables
in bold are significant at
P\ 0.05

SE standard error

Biological group Variables Estimate SE t-value P value

Total richness (Intercept) 0.000 0.023 0.000 1.000

Bank - 0.037 0.025 - 1.472 0.152

Roots 0.071 0.025 2.802 < 0.01

LWDab 0.088 0.025 3.544 < 0.01

Fish (Intercept) 0.000 0.028 0.00 1.000

Bank - 0.056 0.032 - 1.76 0.089

Fines 0.095 0.032 2.98 0.006

LWDin 0.079 0.029 2.72 0.011

Veget 0.090 0.029 3.16 0.004

Chironomidae (Intercept) - 0.104 0.080 - 1.301 0.204

Treatment 0.208 0.121 1.716 0.097

Bank 0.127 0.056 2.250 0.032

LWDin - 0.221 0.063 - 3.490 < 0.01

LWDab 0.135 0.064 2.107 0.044

Ground 0.137 0.056 2.475 0.020

EPT (Intercept) 1.772 0.063 28.003 < 0.01

Roots 0.233 0.066 3.537 < 0.01

LWDab 0.165 0.066 2.492 0.018

Leaf - 0.261 0.065 - 4.039 < 0.01

Odonata (Intercept) 0.213 0.116 1.830 0.077

Treatment - 0.425 0.165 - 2.575 0.015

Bank - 0.195 0.087 - 2.238 0.033

Roots 0.128 0.087 1.468 0.153

Fig. 2 Biplot showing
ordination of streams
located inside and outside
the Caxiuanã National
Forest along the first two
axes (gradients) derived
from PCA of stream habitat
variables. The percent total
variation modelled by each
axis is shown in parentheses;
see Table 2 for variable
codes and loadings
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individuals) were found in the CNF and 150 species
(13,443 individuals) were found in the surrounding

area. Surveys yielded 20,308 individual of 79 fishes,

including 49 species (10,223 individuals) in the CNF
and 61 species (10,085 individuals) in the surrounding

area; 2,535 individual of 47 Chironomidae, including

38 species (929 individuals) in the CNF and 44 species
(1,606 individuals) in the surrounding area; 2,261

individuals of 28 EPT species, including 23 species

(695 individuals) in the CNF and 19 species (1,566
individuals) in the surrounding area; and 280 individ-

uals of 44 Odonata, including 26 species (94 individ-

uals) in the CNF and 26 species (186 individuals) in
the surrounding area (See Supplementary Material

Table S5).

Analysis of autocorrelation revealed significant
associations with PCNM spatial filters for total species

richness (adjusted R2 = 0.34, P = 0.01), Chironomi-

dae (adjusted R2 = 0.47, P = 0.001), and Odonata
(adjusted R2 = 0.26, P = 0.02). However, since fish

(adjusted R2 = 0.16, P = 0.09) also showed a rela-

tively high R2 values (although nonsignificant), we
used their residuals as well. EPT (adjusted

R2 = - 0.01, P = 0.49) showed no signs of spatial

autocorrelation, so we used the raw values for species
richness for this group.

GLM results indicated that ‘Live trees or roots’ and

‘LWD above the channel—class 3 (medium to very
large)’ were positively correlated with total species

richness of fish and aquatic insects (adjusted

R2 = 0.34). For fish (adjusted R2 = 0.54), species
richness was positively correlated with ‘fine sub-

strate’, ‘LWD inside the channel—class 3 (medium to

very large)’, and ‘overhanging vegetation cover’. For
Chironomidae (adjusted R2 = 0.38), ‘bankfull width’,

‘LWD above the channel—class 3 (medium to very

large)’, and ‘ground-layer vegetation cover’ were
positively associated to species richness, and the

‘LWD inside the channel—class 3 (medium to very

large)’ was negatively related to species richness. EPT
species richness (adjusted R2 = 0.49) had a positive

correlation with ‘live trees or roots’, ‘LWD above the
channel—class 3 (medium to very large)’, and nega-

tive correlation with ‘leaf litter cover’. For Odonata

(adjusted R2 = 0.21), ‘bankfull width’ and ‘surround-
ing zone’, and level of the categorical variable

‘treatment’ were negatively correlated with species

richness (Table 2).

For assemblage composition data, all taxonomic
groups revealed evidence of spatial autocorrelation

(Fish: F = 2.18, P\ 0.05; Chironomidae: F = 1.45,

P\ 0.05; EPT: F = 1.91, P\ 0.05; Odonata:
F = 1.48, P = 0.01), and thus, we used residuals in

subsequent analyses. PCoA revealed that biological

groups had different degrees of separation between the
CNF and surrounding zone (Fig. 3), and we selected

the first PCoA axis for each group to access the

influence of environmental variables and treatment on
assemblage composition.

Table 3 summarizes results from GLM analysis

with scores on the first PCoA axis representing local
assemblage composition. The first PCoA axis for fish

(adjusted R2 = 0.76) was positively associated with

‘overhanging vegetation cover’, ‘LWD inside the
channel—class 3 (medium to very large)’ and ‘fine

sediment’, and negatively associated with ‘surround-

ing zone’ level of the categorical variable ‘treatment’.
For Chironomidae (adjusted R2 = 0.49), the first

PCoA axis was positively associated with ‘fine

substrate’ and ‘live trees or roots’, and was negatively
associated with ‘total human impact’ and ‘LWD above

the channel—class 3 (medium to very large)’. For EPT

(adjusted R2 = 0.56), the first PCoA axis was nega-
tively associated with ‘fines substrate’ and ‘LWD

inside the channel—class 3 (medium to very large)’.

The first PCoA axis for Odonata composition (ad-
justed R2 = 0.73) was negatively associated with ‘fine

substrate’, ‘live trees or roots’ and ‘LWD inside the

channel—class 3 (medium to very large)’, whereas
‘bankfull width’ had a positive association.

Discussion

Stream habitat in the protected forest
and surrounding area

We found significant habitat differences between
streams located within CNF and those in the sur-

rounding area with regard to substrate, channel
morphology, and vegetation. The surrounding areas

had shallower thalweg depth and smaller proportions

of large woody debris, leaf litter and wood substrate,
and fine sediments. Riparian forests are the source of

LWD in streams (Sweeney & Newbold, 2014), and

LWD was more prevalent in CNF streams. LWD
influences hydrology, hydraulics and sediment
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dynamics (Gurnell et al., 2002), as well as develop-
ment and stability of pools and backwaters (Daniels &

Rhoads, 2003; Wallerstein & Thorne, 2004; Kauf-

mann & Faustini, 2012). Streams within the CNF tend
to have slower water velocities than streams in the

surrounding area (Monteiro-Júnior et al., 2016; de

Faria et al., 2017), and this could have been associated
with greater amounts of LWD. LWD increases not

only structural complexity of instream habitat that

affects biodiversity, but also retention of particulate
organic matter that supports aquatic food webs (Dı́ez

et al., 2000; Krause et al., 2014).

We estimated LWD abundance both within stream
channels and on stream banks, and both were higher

inside the CNF. These streams lie within an area of

floodplains drained by rivers used by the local
population for boat transportation (Brasil, 2007). In

the area surrounding the CNF, wood is removed from

stream channels and banks to facilitate boat passage
(Monteiro-Júnior et al., 2016). Removal of LWD from

streams would alter dynamics involving particulate

organic matter, invertebrate feeding and microbial
processing of material affecting ecosystem respiration

and nutrient cycling (Eggert et al., 2012).

Fig. 3 PCoA ordination plots for taxonomic groups showing relationships of streams within and outside the CNF. The percent total
variation modelled by each axis is shown in parentheses
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Streams within the CNF have very low gradients

and extensive floodplains (* 100 m wide) (Benone
et al., 2018) and continuously accumulate fine sedi-

ments (Behling & da Costa, 2000). These streams also

receive large amounts of leaf litter and fine particulate
organic matter (Montag & Barthem, 2006). This

accumulation of organic matter from the riparian

forest depends not only on forest productivity, but also
on the capacity of the stream to retain allochthonous

organic material, which in turn depends on both

intrinsic properties of that material and physical
features of the stream (Li & Dudgeon, 2011). For

example, woody debris and leaf litter retention in CNF

streams reduce flow velocity (Hoover et al., 2006) and
create extensive backwaters (Behling & da Costa,

2000). CNF streams had greater water depth at the
thalweg compared to streams outside the CNF. These

deeper thalwegs are associated to reduced flows and

lower shear stress near the bottom (Hoover et al.,
2006), which leads to greater deposition of fine

particles that otherwise would be transported in

suspension.

Aquatic biota in streams of the protected forest

and surrounding area

Taxonomic richness of fish, Chironomidae, EPT and

all groups combined was positively associated with
LWD within and at the margins of streams, and both

LWD and taxonomic richness were higher in streams

inside the CNF. Our study is in agreement with
previous surveys in the region (Juen et al., 2016; de

Faria et al., 2017; Prudente et al., 2017), since we

found moderate relationships between other environ-
mental variable and species richness (i.e. \ 60%

explanation of variation). The moderate levels of
explanation may be due to the dynamic nature of small

streams in the Amazon, which are prone to effects of

other variables not measured in our study associated

Table 3 Results from
GLM analysis

Habitat variables and
category variable
‘treatment’ (CNF and
surrounding zone) were
included as explanatory
variables, and the response
variable is score on the first
axis from PCoA indicating
assemblage composition of
taxonomic groups.
Variables in bold are
significant at P\ 0.05

SE standard error

Taxonomic group Variable Estimate SE t-value P-value

Fish (Intercept) 0.041 0.024 1.729 0.096

Bank - 0.031 0.018 - 1.690 0.103

Fines 0.077 0.022 3.503 < 0.01

LWDin 0.078 0.019 4.163 < 0.01

LWDab - 0.032 0.021 - 1.499 0.146

Veget 0.085 0.017 5.070 < 0.01

Leaf - 0.036 0.020 - 1.798 0.084

Treatment - 0.082 0.037 - 2.232 0.034

Chironomidae (Intercept) - 0.003 0.021 - 0.134 0.895

Fines 0.133 0.026 5.156 < 0.01

Roots 0.051 0.022 2.351 0.026

LWDab - 0.056 0.027 - 2.091 0.046

Human - 0.066 0.023 - 2.824 < 0.01

EPT (Intercept) 0.000 0.031 0.000 1.000

Fines - 0.147 0.033 - 4.447 < 0.01

Roots - 0.055 0.032 - 1.699 0.100

LWDin - 0.106 0.034 - 3.068 < 0.01

Human 0.065 0.034 1.919 0.065

Odonata (Intercept) 0.022 0.027 0.835 0.412

Bank 0.070 0.030 2.318 0.029

Fines - 0.145 0.030 - 4.902 < 0.01

Roots - 0.080 0.028 - 2.850 < 0.01

LWDin - 0.107 0.028 - 3.788 < 0.01

Ground - 0.040 0.028 - 1.388 0.178

123

272 Hydrobiologia (2019) 826:263–277



with disturbance regimes, reproduction/recruitment,
dispersal, metacommunity dynamics, and others.

The positive association of medium to very large

LWD inside the channel with aquatic species richness
and composition reflects the dependence of aquatic

species on submerged structures to provide cover from

predators, nesting sites, and food resources (Wright &
Flecker, 2004; Valente-Neto et al., 2015; Pilotto et al.,

2016). LWD contributes not only to the quantity but

also the quality of microhabitats available in streams
(Braccia & Batzer, 2001), providing structural com-

plexity that influences the spatial distribution of

several taxa (Smith et al., 1993). Habitat structural
complexity facilitates coexistence of species with

different ecological requirements (Barreto, 1999), and

has been shown to be positively associated with
aquatic species richness in streams and rivers (Wright

& Flecker, 2004; Willis et al., 2005).

The positive relationship between LWD and rich-
ness of aquatic insect taxa and fish species in the study

area is consistent with findings from other studies (e.g.

Watson & Hilman, 1997; Wright & Flecker, 2004;
Schneider & Winemiller, 2008). This relationship

involving fishes has been inferred to be due to the high

abundance and diversity of aquatic insects that colo-
nize woody debris and provide food for fishes, as well

as the structural complexity of woody debris that

provides shelter from predators (Wright & Flecker,
2004; Schneider & Winemiller, 2008).

CNF streams had higher percentages of fine sedi-

ment and this metric was positively correlated with
fish species richness and assemblage composition.

Deposition of fine sediments in streams results from

both natural processes and human activities (Wood &
Armitage, 1999) and influences stream hydrology,

geomorphology and ecology (Berkman & Rabeni,

1987; Owens et al., 2005). Although deposition of fine
sediments is generally recognized as negatively

impacting aquatic ecosystems (e.g. Sutherland et al.,

2012; Chapman et al., 2014), that apparently is not the
case in the CNF streams where high abundance of

particulate organic matter is associated with higher
fish species richness.

Taxonomic richness and assemblage composition

of Odonata, Chironomidae and EPT were most
strongly associated with variables linked to substrate

and other habitat features, with only chironomids

showing a strong association with human impacts.
This finding is consistent with other studies (e.g.

Heino, 2005; Rinella & Feminella, 2005, Entrekin
et al., 2007; Sueiro et al., 2011) that showed chirono-

mid and EPT responses to changes in terrestrial

detrital inputs and substrates, such as fine sediments
and LWD. Some have proposed that such responses by

benthic invertebrates reflect spatio-temporal variation

in disturbances dynamics in riparian habitats (Wallace
et al., 2001, Glaz et al., 2009; Hartwig et al., 2016).

Similar results for chironomid species richness and

assemblage composition for streams inside and out-
side the CNF could be related to the dispersal abilities

and environmental tolerance of this group (Franquet,

1999). Adult Odonata abundance in streams may be
linked to conditions required for oviposition and larval

development (Resende & De Marco, 2010; Monteiro-

Júnior et al., 2015; Miguel et al., 2017; Oliveira-Junior
et al., 2017). Riparian forest structure, canopy cover,

and level of human impact were the principal

environmental factors associated with Odonata assem-
blage composition.

Environmental impacts on aquatic biota appear to

be low in this region of low human population density.
Woody debris creates structurally complex habitat that

promotes high aquatic biodiversity. Our findings

suggest that the CNF remains relatively pristine and
therefore provides a reference site for the assessment

of stream habitat quality in the region. Reference sites

are increasingly difficult to find, especially in devel-
oping tropical regions, such as the eastern Amazon,

where environmental impacts are increasing rapidly.

In addition, we emphasize the need to protect streams
in the surrounding areas, both for sheltering an

important proportion of the local aquatic biodiversity

and because it represents a buffer area for the
conservation unit. Given that the area surrounding

the CNF remains sparsely populated and has not yet

been severely deforested, it still has significant
ecosystem services and conservation value. At pre-

sent, the main impact to streams in areas surrounding

the protected area seems to be the removal of LWD to
improve boat navigation. However, population expan-

sion, urbanization and exploitation of natural
resources, especially logging, pose serious threats to

aquatic diversity in the region. To conserve aquatic

biodiversity, we recommend expansion of the CFN
protected area and/or adoption of management poli-

cies, including land use restrictions, within its buffer

zone. Such measures are urgent, because licensing for
reduced-impact logging was recently approved for
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nearly 200,000 ha within the CNF over the next
40 years (Ministry of Environment, Ordinance no. 467

of December 2014; Brazilian Forest Service, Ordi-

nance no. 231 of December 2, 2016).

Acknowledgements We are especially grateful to the
employees of the Ferreira Penna Research Station for their
assistance with fieldwork. This study was supported by grants
from the Programa de Pesquisa em Biodiversidade, Fundação
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biani, 2016. Effects of land use on the composition and
structure of aquatic invertebrate community and leaf
breakdown process in Neotropical streams. River Research
and Applications 32: 1958–1967.

123

Hydrobiologia (2019) 826:263–277 275



Malmqvist, B. & S. Rundle, 2002. Threats to the running water
ecosystems of the world. Environmental Conservation 29:
134–153.

Martins, I., R. Ligeiro, R. M. Hughes, D. R. Macedo & M.
Callisto, 2018. Regionalisation is key to establishing ref-
erence conditions for neotropical savanna streams. Marine
and Freshwater Research 69: 82–94.

MEA-Millennium Ecosystem Assessment, 2005. Ecosystems
and Human Well-Being: Synthesis. Island Press, Wash-
ington, DC.

Mensing, D. M., S. M. Galatowitsch & J. R. Tester, 1998.
Anthropogenic effects on the biodiversity of riparian wet-
lands of a northern temperate landscape. Journal of Envi-
ronmental Management 53: 349–377.

Miguel, T. B., J. M. B. Oliveira-Junior, R. Ligeiro & L. Juen,
2017. Odonata (Insecta) as a tool for the biomonitoring of
environmental quality. Ecological Indicators 81: 555–566.

Montag, L. F. A. & R. B. Barthem, 2006. Estratégias de con-
servação em comunidades de peixes da Bacia de Caxiuanã
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