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ARTICLE INFO ABSTRACT

Keywords: This study investigated occurrence of microplastic particles in digestive tracts of fishes from the Amazon River
Brazil estuary. A total of 189 fish specimens representing 46 species from 22 families was sampled from bycatch of the
Bycatch shrimp fishery. Microplastic particles removed from fish gastrointestinal tracts were identified using Attenuated
P"H“ti_on Total Reflectance — Fourier Transform Infrared (ATR-FTIR). In total, 228 microplastic particles were removed
Trophic level from gastrointestinal tracts of 26 specimens representing 14 species (30% of those examined). Microplastic
particles were categorized as pellets (97.4%), sheets (1.3%), fragments (0.4%) and threads (0.9%), with size
ranging from 0.38 to 4.16 mm. There was a positive correlation between fish standard length and number of
particles found in gastrointestinal tracts. The main polymers identified by ATR-FTIR were polyamide, rayon and
polyethylene. These findings provide the first evidence of microplastic contamination of biota from the Amazon

estuary and northern coast of Brazil.

1. Introduction

During recent decades, changes in manufacturing and consumer
behavior together with insufficient waste management have resulted in
accumulation of plastic debris in oceans throughout the world (e.g.,
Costa and Barletta, 2015; Jambeck et al., 2015), with plastic now
composing between 60% and 80% of all marine debris (Barnes et al.,
2009). It has been estimated that nearly half of all plastic products are
discarded in < 12months after production (Hopewell et al., 2009).
Once introduced into marine ecosystems, plastic waste becomes frag-
mented as it disperses via wind and oceanic currents (Barnes et al.,
2009; Lebreton et al., 2012) and is distributed throughout the water
column (Bellas et al., 2016). Plastic debris accumulates not only in the
open ocean, but also on beaches, mangrove forests and other coastal
habitats (Ivar do Sul and Costa, 2007). Although some plastic debris is
dumped directly into marine waters, rivers accumulate discarded ma-
terial throughout their watersheds and transport it to the oceans
(Lechner et al., 2014; Vendel et al., 2017). Unfortunately, rivers and
estuaries have received relatively little attention with regard to the
plastic pollution problem (Costa and Barletta, 2015), especially within
the southern hemisphere (Cannon et al., 2016).
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Reports of interactions between marine fauna and plastic debris
have increased by 75% over the last two decades, including 267 species
reported in 1997 (Laist, 1997) and 693 species reported in 2015 (Gall
and Thompson, 2015). Plastic waste in the environment negatively
impacts biota, including entanglement of animals within large items
(macroplastics) and ingestion of microplastics (particles < 5mm) by
organisms, with subsequent transfer within the food web (Fossi et al.,
2012; Cole et al., 2013; Ivar do Sul and Costa, 2014). Ingestion of
plastic can affect organisms both physically and physiologically, in-
cluding direct mortality from entanglement and choking as well as sub-
lethal effects, such as compromised feeding, digestion, and reproduc-
tion activities (Gregory, 2009; Vendel et al., 2017). Exposure to che-
mical pollutants that bind to plastic particles has become a major
concern, especially when chemicals bioaccumulate in fish destined for
human consumption (Teuten et al., 2009). The effects of human con-
sumption of organisms that contain microplastics are still poorly un-
derstood. Some evidence has been reported that plastic particles may
cause immunotoxic responses, resulting either from chemical exposure
or particle-induced mechanical stress (Seltenrich, 2015).

In aquatic and marine environments, plastics undergo a continuous
process of disintegration from the action of water and wind causing
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Fig. 1. Location of the Amazon River estuary in northeastern Brazil (inset) showing the survey area (yellow shaded area). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

abrasion from contact with solid particles, and through chemical de-
composition by exposure to solar radiation (Moore, 2008; Barnes et al.,
2009). Plastic debris is classified as macroplastics (particle dia-
meter > 25 mm), microplastics (diameter < 5mm) (GESAMP, 2015)
or mesoplastics (5-25mm) (Jabeen et al., 2017). Microplastics are
further classified according to their origin. Primary microplastics are
resin pellets and microbeads used in cleaning products, cosmetics,
medicines and other products; secondary microplastics are formed from
the fragmentation of larger meso- and macroplastics (Cole et al., 2011).
Plastic pellets are used worldwide as a raw material in the production of
plastic products (Ogata et al., 2009). With exposure to solar radiation,
plastic pellets often lose or change their initial white or translucid co-
luoration and many anthropogenic and biogenic chemicals can be ad-
sorbed by their surface (Endo et al., 2005; Miranda and Carvalho-
Souza, 2015). Hydrophobic characteristics of plastics allow them to
function as vectors for organic contaminants and heavy metals
(Colabuono et al., 2010; Holmes et al., 2012).

Many fishes ingest tiny plastic particles either intentionally or ac-
cidentally while feeding in the water column or the benthos (Browne
et al., 2010). Most investigations of microplastic ingestion by wild fish
have been conducted in the northern hemisphere (e.g. Boerger et al.,
2010; Phillips and Bonner, 2015), especially in Europe (e.g. Neves
et al., 2015; Bellas et al., 2016; McGoran et al., 2017) and North
America (e. g. Carson, 2013; Petters and Bratton, 2016). Microplastic
ingestion by fishes in the Southern Hemisphere has been documented
by studies performed in Africa (e.g. Biginagwa et al., 2016; Naidoo
et al., 2016), Australia (e.g. Cannon et al., 2016), Easter Island (e.g. Ory
et al., 2017), Indonesia (e.g. Rochman et al., 2015), and South America
(Mizraji et al., 2017; Ory et al.,, 2017). Studies in Brazil have been
conducted in the northeastern and southeastern regions (e.g. Possatto
et al., 2011; Ferreira et al., 2016; Silva-Cavalcanti et al., 2017), with no
investigations as yet for the northern region that includes the Amazon
River estuary.

Brazil's northern coastline has low human population density and
contains the world's second-longest, continuous area of largely un-
disturbed mangrove forest (ca. 7000 km?) (Giarrizzo and Krumme,
2008). In 2016, an extensive and biodiverse reef system (~9500 km?)
was discovered offshore from the mouth of the Amazon River (Moura

et al., 2016). This discovery, paired with the fact that 20% of Brazil's
fisheries landings come from the northern coast (Krumme et al., 2015),
lends urgency to the need to improve knowledge about plastic pollution
in the region. Based on experiences in estuaries from northeastern
Brazil, Costa and Barletta (2015) identified the Amazon River estuary as
a priority area for future studies on marine plastic pollution. The goal of
our study was to investigate the presence of microplastics ingestion by
fishes from the Amazon River estuary on the coast of Brazil. We hy-
pothesized that quantity and size of the ingested particles increases
with fish body size, weight and vertical trophic position within the
estuarine food web.

2. Material and methods
2.1. Study area

Brazil's North Coast extends over 1400 km along the states of Amapa
and Par4, covering an area of approximately 488,000 km? and a variety
of ecosystems including mesophotic reefs, islands, tidal flats, and es-
tuaries with extensive mangrove forests (Marceniuk et al., 2013)
(Fig. 1). The region's equatorial humid climate (Kottek et al., 2006) has
annual rainfall up to 3300 mm and average annual temperatures of 27.5
to 29.5 °C (Pereira et al., 2009).

The region includes the estuary of the world's largest river, the
Amazon, with its mean annual discharge of 6.3 trillionm® of fresh-
water, 1.2 billion tons of sediments and 290 million tons of solutes that
flow onto the continental shelf (Oltman, 1968; Meade, 1985; Nittrouer
et al., 1995). The Amazon's freshwater plume can seasonally expand up
to 120 km from the river mouth to the open ocean where salinities can
close to zero.

The Amazon's massive freshwater discharge affects oceanographic
processes, creating dynamic system of currents and tidal fluxes. The
large sediment discharge contributes to high primary and secondary
productivity, sustaining important artisanal and commercial fisheries
(Neiva and Moura, 1977; Wolff et al., 2000). Estuarine fishes and
crustaceans have great economic importance and many of them interact
with substrates, influencing physical and chemical processes, including
nutrient dynamics (Lana et al., 1996).
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2.2. Fish sampling

Fish specimens analyzed in this study were obtained from bycatch of
the southern brown-shrimp fishery, which is monitored by the Center
for Research and Management of Fishing Resources of Brazil's North
Coast (CEPNOR) of the Brazilian Ministry of the Environment (MMA).
Samples were obtained from 104 bottom trawls carried out between
July 2015 and August 2016 at depths varying from 35 to 85 m. Due to
ship's limited freezer space, a sample of the most abundant fish species
were collected from each haul, frozen immediately, and stored for up to
2weeks at —20 °C in the laboratory prior to processing.

2.3. Sample processing

In the laboratory, the fishes were identified to species level and each
specimen was measured for standard length (SL) with a caliper (0.01 cm
precision) and weighed with a digital scale (Marte BL3200H; 0.01 g
precision). For each species trophic level was assigned according to
values provided in FishBase (Froese and Pauly, 2017). To remove the
digestive tract, a longitudinal incision was made in the abdominal area
using surgical forceps and a scalpel. Each digestive tract (stomach and
intestine) was cut longitudinally, and contents were washed into a Petri
dish using 70% ethanol.

Stomach and intestine contents were examined under a stereo-mi-
croscope (Opton Tim-2b) at 6.5X to 50 X magnification. Plastic par-
ticles were separated from other ingested particles, counted, classified
according to shape and colour, measured (diameter in longest dimen-
sion to 0.001 mm precision), and photographed using a ZEISS SteREO
Discovery V12 stereo microscope with the Zen software (blue edition,
v2.0, Zeiss, Oberkochen, Germany).

Before and after each procedure for each specimen, all work sur-
faces and instruments were thoroughly cleaned with 70% ethanol and a
new, clean pair of latex gloves was worn. To test for potential presence
of airborne plastic fibers at the work station, a clean (using 70%
ethanol) glass Petri dish that was placed at the work station at the start
of each day was examined with the stereo-microscope at the end of the
day.

A sample of each microplastic type recorded in the study was ran-
domly selected for polymer identification. Recent studies showed that
Fourier Transform Infrared (FTIR) spectroscopy is the most reliable
method to identify the composition of maritime plastic debris, using
either single-element or Focal Plane Array (FPA) detectors (Srinivasa
Reddy et al., 2006; Mecozzi et al., 2016; Cincinelli et al., 2017). In this
study, FTIR spectra were collected in Attenuated Total Reflectance
(ATR) mode, using a single-element MCT detector, which was deemed
as the optimal set up, given the type and morphology of the plastic
samples. The ATR-FTIR analysis of the samples was carried out using a
Cary 620-670 FTIR microscope, equipped with a GeATR crystal (Agi-
lent Technologies). The spectra were recorded directly on the samples
with a spectral resolution of 8cm™?, acquiring 128 scans for each
spectrum in the 4000-650 cm ~ 'spectral range.

2.4. Statistical analysis

The percentage of frequency of occurrence of microplastics within
digestive tracts was calculated using the following formula: FO
% = (Ni/N) x 100, where FO% = frequency of occurrence of micro-
plastic particles; Ni = number of gastrointestinal tracts that contained
microplastic particles; N = total number of gastrointestinal tracts ex-
amined.

Kendall's rank correlation was performed to assess the association
between i) number of ingested microplastic particles and fish body size,
ii) number of ingested microplastic particles and fish weight, iii)
number of ingested microplastic particles and fish trophic level, and iv)
the size of microplastic particles and fish body size. Whenever the
correlation was significant, a linear regression was performed to derive
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an equation predicting the relationship between the response variable
and independent variable. Statistical tests only included specimens that
had microplastic particles in the gastrointestinal tract, and were per-
formed using the R statistical package (R Core Team, 2017).

3. Results

Overall, 189 fish specimens representing 46 species from 22 families
were analyzed (Table 1). Standard length ( + SD) averaged 24.7
( £ 13.3) cm, varying from 10.2 to 92 cm, and average body weight was
558.3g ( * 1429.2) ranging from 28.2g to 10,000g. All fishes are
carnivorous and the species trophic level (TL), based on values reported
in FishBase, ranged from ranged from 3.1 to 4.5.

In total, 228 microplastic particles were recovered from gastro-
intestinal tracts of 26 specimens belonging to 14 species (Table 1),
which represented 13.7% of the total abundance and 30.4% of the total
species richness in samples. From the total number of microplastic
particles, 210 (92.1%) were found in the stomachs of 21 specimens
representing 11 species, and 18 particles (7.9%) were recovered from
the intestines of 13 specimens representing six species (Table 1). On
average, 1.2 ( + 5.0) particles per fish were found. The standard length
of fishes with ingested microplastics varied from 16.0 to 57.5 cm (mean
SL = 32.7cm = 11.7), and weight varied between 72.7 and 10,000 g
(mean = 1531.9g ( + 3132.7). Size, weight and number of micro-
plastic particles found in gastrointestinal tract for each fish are provided
as supplementary material (Appendix 1).

The greatest number of ingested microplastics per specimen (50
particles) was recorded for C. hippos. This species was responsible for
40.3% of all recovered microplastic particles. The frequency of occur-
rence (FO%) of microplastics per species, among those with three or
more specimens examined, varied between 18.7% (Cynoscion micro-
lepidotus) and 100% (Bagre marinus, Caranx hippos).

A positive correlation was found between fish SL and number of
microplastic particles in the gastrointestinal tract (Kendall's
Tau = 0.41, p = 0.003). Linear regression analysis indicated that each
additional centimeter of SL was associated with an additional 0.58 in-
gested particles (r* = 0.37; p = 0.0008; y = —10.374 + 0.586 x)
(Fig. 2). In contrast, no significant correlation (p = 0.43) was found
between the quantity of ingested particles and trophic level, between
the size microplastic particles and fish SL (p = 0.48), or between the
quantity of ingested particles and fishes weight (p = 0.15).

The size of plastic particles recovered from fish gastrointestinal
tracts was always < 5mm (range = 0.38-4.16 mm, average
( £+ SD) = 1.82 ( = 0.68)). Consequently, all particles are classified as
microplastics (Arthur et al., 2009). Particles were recorded as four
shape categories: pellets (97.4%), sheets (1.3%), fragments (0.4%) and
threads (0.9%). Colours were either clear, yellow, orange or blue
(Fig. 3).

Miroplastic polymers were identified using ATR-FTIR and compar-
ison with reference spectra (Fig. 3). Samples classified as blue thread
and yellow fragments had absorption spectra consistent with poly-
ethylene (Fig. 3a, b): 2920 (v,s CH,), 2850 (vs CH,), 1471 (bending
deformation), 1373 (8,CH;) and 720cm™! (rocking deformation)
(Gulmine et al., 2002). Among blue and yellow fragments, some spec-
tral bands also could be consistent with presence of adsorbed algae: ca.
3350 (N—H, O—H stretching), 1650 (amide I) and 1540 cm ™! (amide 1)
(Kong and Yu, 2007). Among blue fragments, some weak bands and
shoulders suggest the presence of oxygenated groups that form during
the abiotic oxidation of polyethylene (Gewert et al., 2015): 1715 (C=0
stretching ketones, carboxylic acids) and 1738 cm ™! (C=O0 stretching
esters) (Gardette et al., 2013). Transparent sheets (Fig. 3c) showed
spectral bands characteristic of Rayon at 3330 (O—H stretching),
2901(CH, CH, stretching), 1648 (HOH bending of water), 1445
(H—C—H and H—O—C bending), 1373 and 1320 (H-C—C, H—C—O0, and
H—O—C bend), 1110 and 1045 (C—C and C—O—C stretching), and
901 cm~ ! (C—O—C in plane, symmetric) (Kaur et al., 2013; Li-Ling,
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Fig. 2. Scatter plot showing the relationship between the number of ingested
microplastic particles and SL among fishes that had microplastic particles in
their gastrointestinal tracts (n = 26). Shaded area indicates 95% confidence
interval for the linear regression.

2007). Finally, samples classified as pellet I and pellet II (Fig. 3d, e) had
spectra indicative of nylon at 3285 (N—H stretching), 3060 (C—H
stretching, asymm., N—H band), 2953 (CH, asymm. stretching), 1640
(amide I), 1529 (amide II), 1447 and 1400 (CH, bending), and
1242 cm ™! (amide IIT) (Mahdi, 2011; Charles et al., 2009; Fayemi et al.,
2016). For the pellet I sample, the broad band around 1045cm™*!
(C—O—C stretching) suggests the presence of adsorbed cellulosic fibers.

4. Discussion

This study provides the first evidence of ingestion of microplastic
particles by fishes from the Amazon River estuary. In recent studies
conducted in the northern Atlantic Ocean, 19.80% (Neves et al., 2015),
17.50% (Bellas et al., 2016) and 2.98% (Brate et al., 2016) of fishes had

Marine Pollution Bulletin 133 (2018) 814-821

microplastics in their gastrointestinal tracts. Microplastics were re-
ported from guts of 50% of marine fishes near the city of Salvador
(Miranda and Carvalho-Souza, 2015) and in 23% of fishes from the
Goiana estuary (Possatto et al., 2011), both in Northeast Brazil. Another
study of fishes from the Goiana estuary (Ramos et al., 2012) found le-
vels of microplastic ingestion (13.4%) similar to the level we found for
fishes the Amazon estuary (13.7%).

The greatest number of ingested microplastics (50 particles) was
encountered in a Crevalle jack (Caranx hippos) a predatory fish that can
attain 124 cm SL and 32kg (Meyer et al., 2001; Froese and Pauly,
2017). Considered generalists, Crevalle jack feed on abundant prey,
such as schooling fish and crustaceans (Kwei, 1978; Sancho, 2000). A
previous study had confirmed the relationship between the ingestion of
microplastics and the feeding strategies of demersal fishes in the
Eastern Mediterranean (Anastasopoulou et al., 2013). Romeo et al.
(2015) proposed that microplastics are ingested most frequently by
generalist foragers that target abundant small prey - a characteristic
consistent with Crevalle jack feeding habits. The authors further pro-
posed that microplastics also are ingested secondarily when their prey
already contain microplastics. Given that microplastics tend to accu-
mulate in the benthos (Bellas et al., 2016), biomagnification may be
accelerated in predators that target bottom-feeding fishes and crusta-
ceans. Ingestion of microplastics by the Crevalle jack is cause for con-
cern, given the species' ecological importance in many tropical and
subtropical marine ecosystems. Additionally, fishes of the Carangidae
family are among the most important in tropical fisheries (Reuben
et al., 1992; Crabtree et al., 2002). Our finding of a significant corre-
lation between fish length and the quantity of ingested microplastic
particles corroborates those of Alomar and Deudero (2017) for goatfish,
Mullus surmuletus, in the Western Mediterranean. Our failure to find a
relationship between the number of ingested microplastics and trophic
level may have been influenced by the limited range of trophic levels
(3.1 to 4.5) among the species surveyed.

Several investigations of marine vertebrates and invertebrates have
found that microfibers are the most commonly ingested microplastic
particles (Cole et al., 2013; Bellas et al., 2016; Mizraji et al., 2017). In
our study, plastic pellets comprised > 97% of the microplastics re-
covered from fish gastrointestinal tracts. This corroborates the findings

Fig. 3. ATR-FTIR spectra of the microplastic
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of Miranda and Carvalho-Souza (2015) that fishes from the Brazil's
northeastern coast near the city of Salvador had exclusively ingested
pellets. This region is home to the largest petrochemical complex in
Latin America, which could contribute to plastic pollution of rivers and
coastal habitats (Ogata et al., 2009).

The colour of the recovered pellets (predominately shades of
yellow) was similar to that observed by Miranda and Carvalho-Souza
(2015) and indicative of persistent organic pollutants (POPs) attached
to the surface of plastics (Endo et al., 2005). Furthermore, the yellowish
colour suggests that the pellets experienced oxidation and photo-oxi-
dation while adrift in the sea (Ogata et al., 2009; Gewert et al., 2015),
implying the original introduction into the environment might have
occurred far from our study area. Yellow colour also can be caused by
interaction with digestive enzymes (Miranda and Carvalho-Souza,
2015).

As estimated by ATR-FTIR analysis, polyamide (Nylon) represented
97.4% of all microplastics ingested by fishes in our sample from the
Amazon estuary. We conclude that the high density (1.13-1.15 g/m?) of
polyamide (GESAMP, 2015), paired with the round shape of pellets,
contributed to their accessibility to fishes in the study area. Most fishing
gear is manufactured from nylon (Timmers et al., 2005), and the fishing
industry has been estimated to contribute approximately 18% of all
plastic debris found in the oceans (Andrady, 2011).

Apart from the nylon pellets, blue thread, yellow fragments and
transparent sheets each contributed < 2% to the total of plastic parti-
cles recovered from fish gastrointestinal tracts. Blue thread and yellow
fragments were identified as polyethylene (PE), a commonly produced
polymer (Jambeck et al., 2015) used to make plastic bags and storage
containers (GESAMP, 2015). Globally, PE is the most abundant polymer
found in the environment (Andrady and Neal, 2009; Hidalgo-Ruz et al.,
2012). Relative to nylon pellets, PE microplastics were uncommon in
fish gastrointestinal tracts, and this could be related to their relatively
low density (0.91-0.96 g/cmS) (Coutinho et al., 2003; GESAMP, 2015).
Floating PE particles, therefore, would be less available to demersal
fishes. Transparent sheets were made of rayon, a man-made, semi-
synthetic polymer that is used as an artificial textile material
(Kauffman, 1993; Woodall et al., 2014). Possible sources are clothing,
furniture, and personal hygiene products in sewage effluents (Lusher
et al., 2012). In the Amazon estuary, this rayon contributed insignif-
icantly, probably due to this material's rapid rate of degradation (Park
et al., 2004).

Some marine systems, such as enclosed bodies (e.g., Mediterranean
Sea) and zones of gyre convergence, appear to accumulate large
amounts of microplastics (Barnes et al., 2009; Ryan et al., 2009), and
rivers are considered major contributors to pollution in these regions
(Jambeck et al., 2015). Schmidt et al. (2017) demonstrated that rivers
transport microplastics more efficiently than macroplastics, and that
the concentration of microplastic particles is positively correlated to
river size. Along with mismanagement of solid waste disposal, waste-
water discharge, inland navigation and industrial pollution all con-
tribute to entry of microplastics into fluvial ecosystems (Lechner et al.,
2014). The Amazon River discharges the world's greatest volume of
freshwater. Lebreton et al. (2017) estimated that 38,900 tons of plastic
wastes are transported from the Amazon River into the Atlantic Ocean
annually, suggesting that most of the microplastics found in our study
could have originated in the river.

Microplastics, more than macroplastics, are influenced by advection
and circulation patterns, which contributed to the accumulation of
particles in deep-sea environments (Woodall et al., 2014; Van
Cauwenberghe et al., 2015). Offshore convection, saline subduction,
and other oceanographic processes along the coast near the Amazon
River Mouth could contribute to accumulate microplastics in marine
sediments (Talley et al., 2002; Stabholz et al., 2013).

The United Nations Environment Program (UNEP) listed plastic
pollution as a critical problem, comparable to climate change (UNEP,
2014). Research that identifies and quantifies microplastics within the
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environment and bodies of organisms will help us to understand the
magnitude and scope of microplastic pollution, and pave the way to
manage this problem (Boerger et al., 2010; Alomar and Deudero, 2017).
Our findings indicate significant ingestion of microplastics by diverse
fishes inhabiting the Amazon estuary and half of the species, including
many that support important fisheries (Table 1). This raises human
health concerns, because ingestion of fish that consume plastics has the
potential to increase the body burden of hazardous chemicals that ad-
sorb to plastics in the environment (Rochman et al., 2015) and subse-
quently bioaccumulate (Oehlmann et al., 2009; Rochman et al., 2013).
The degree to which microplastics and associated compounds bio-
magnify in food chains is poorly understood at present.
Supplementary data to this article can be found online at https://
doi.org/10.1016/j.marpolbul.2018.06.035.
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