APPENDICES

Category	Abbreviation	Variable
Habitat type	HAB_TYPE	Habitat type score (riffle, run, pool, or glide) averaged
		across transects
	NO_RIFF	Number of riffles in study reach
Substrate	BEDROCK	Percent of substrate that is bedrock
	LG_BLDR	Percent of substrate that is large boulders (>45 cm)
	SM_BLDR	Percent of substrate that is small boulders (25-45 cm)
	COBBLE	Percent of substrate that is cobble (6-25 cm)
	GRAVEL	Percent of substrate that is gravel (2-60 mm)
	SAND	Percent of substrate that is sand (0.06-2 mm)
	MUDSILT	Percent of substrate that is mud or silt (<0.06 mm)
	GRV_LRG	Percent of substrate that is gravel or larger
	EMBEDDED	Substrate embeddedness (percent of boulders and cobble
		covered in fine sediment)
Algae/macrophytes	ALGAE_AB	Abundance of algae in study reach (scored as abundant,
		common, rare, or absent)
	MCRPH_AB	Abundance of aquatic macrophytes in study reach (scored
		as abundant, common, rare, or absent)
Instream cover	STRM_COV	Visually estimated percent cover
	FILA_ALG	Percent of instream cover provided by filamentous algae
	MICRALG	Percent of instream cover provided by microalgae and
		biofilms
	MACRPHYT	Percent of instream cover provided by aquatic
		macrophytes
	LWD	Percent of instream cover provided by large woody debris
	SWD	Percent of instream cover provided by small woody debris
	ROOTS	Percent of instream cover provided by submerged roots
	OVR_VEG	Percent of instream cover provided by overhanging
		terrestrial vegetation
	UNDERCUT	Percent of instream cover provided by undercut banks
	LEAFPACK	Percent of instream cover provided by leaf packs
	BOULDER	Percent of instream cover provided by boulders and other
		large substrates
	ARTIFICL	Percent of instream cover provided by artificial objects
		(e.g., tires, cement blocks)
	COV_TYPE	Number of the above cover types present

Table A1. Local-scale environmental variables (57) used in this study.

Category	Abbreviation	Variable
Stream	STRMBEND	Number of stream bends in study reach
morphology		•
	WELLBEND	Number of well-defined stream bends in study reach
	MODBEND	Number of moderately-defined stream bends in study
		reach
	POORBEND	Number of poorly-defined stream bends in study reach
	WETWIDTH	Wetted width of stream (averaged across transects)
	AVG_DEP	Average stream depth
	THAL_DEP	Thalweg depth (averaged across transects)
	POOL_WID	Maximum pool width
	POOL_DEP	Maximum pool depth
	VELDEPTH	Velocity/depth regime score (optimal, suboptimal,
		marginal, or poor)
Flow	FLOWSTAT	Flow status score (high, moderate, low, or no flow)
	DISCHARG	Discharge (instantaneous stream flow in ft'/s)
Roots/woody debris	CWD_WET	Count of wetted coarse woody debris in study reach
deomb	CWD_BKF	Count of dry coarse woody debris within bank-full stream
		width
	ROOT_WET	Count of wetted root wads in study reach
	ROOT_BKF	Count of dry root wads within bank-full stream width
Riparian buffer	BUFFER	Width of riparian buffer (averagedacross transects)
	RIP_TREE	Percent of riparian vegetation consisting of trees
	RIP_SHRB	Percent of riparian vegetation consisting of shrubs
	RIP_GRAS	Percent of riparian vegetation consisting of grasses/forbs
	RIP_CULT	Percent of riparian vegetation consisting of cultivated
		fields
	OTHER	Percent of riparian vegetation consisting of other types
	CANOPY	Percent of stream shaded by tree canopy (measured with
		densitometer)
Aesthetics	AESTHET	Aesthetics score (wilderness, natural area, common
		setting, or offensive)
Bank	BNK_SLOP	Bank slope (averaged across transects)
characteristics		
	EROSION	Percentage of bank with evident or potential erosion
	SOIL_EXP	Percentage of exposed soil on banks
Water parameters	DO	Instantaneous dissolved oxygen (mg/L)
	PH	pH
	SPCOND	Specific conductivity (µs)
	TEMP	Water temperature (°C)

Table A1 Continued. Local-scale environmental variables (57) used in this study.

Variable	Description
LAT_DS	Latitude, decimal degrees
LONG_DS	Longitude, decimal degrees
EcoLev3	Level 3 ecoregion
PRECIP	Mean annual precipitation, calculated for watershed
ELEV_M	Mean elevation
WSLOPE	Mean watershed slope
WSHEDKM2	Watershed area
DAMS_CT	Number of dams in watershed
OUT_MGD	Cumulative permitted outfall discharge rate within watershed (million
	gallons per day)
OUT_CT	Number of outfalls
RESV_CT	Number of reservoirs within watershed
RESV_PCT	% of land covered by reservoirs within watershed
WATER	% of land covered by water within watershed
DEV_TOT	% developed land
FOR_TOT	% forested land, including forested wetlands
SHRUB	% shrubland
GRASS	% grassland
PASTURE	% pasture
ROWCROP	% rowcrop
WET_TOT	% wetland
AG_TOT	% agriculture (crop + pasture)
IMP_PCT	% impervious cover
CNPY_PCT	% canopy cover

Table A2. Landscape-scale environmental variables used in this study

Table A3. Metrics used to calculate the habitat quality index (HQI) for stream sites.

Abbreviation	HQI Metric
COV_SC	Score for instream cover metric
SUB_SC	Score for substrate stability metric
RIFF_SC	Score for number of riffles metric
POOL_SC	Score for pool dimensions metric
FLOW_SC	Score for flow status metric
BANK_SC	Score for bank stability metric
SIN_SC	Score for channel sinuosity metric
BUFF_SC	Score for riparian buffer metric
AEST_SC	Score for aesthetics metric
HQI_SC	HQI score

Abbreviation	IBI Metric
RICHNESS	Species richness
NATCYPR	Percent of fishes classified as native cyprinids
BENTINV	Percent of fishes classified asbenthic invertebrate feeders
SUNFISH	Percent of fishes classified as Lepomis sunfish species
%INTOL	Percent of fishesconsidered intolerant of pollution
%TOL	Percent of fishesconsidered tolerant of pollution
%OMNIV	Percent of fishes classified as omnivores
%INVERTI	Percent of fishes classified as invetebrate feeders
%PISCIV	Percent of fishes classified as piscivores
SEINE	Percent of fishes captured with seine
MIN	Number of minutes electrofished
%NONNAT	Percent of fishes classified asnon-native
%ANOM	Percent of fishes that are Camp ostoma anomalum
RICHSC	Score for species richness metric
CYPRSC	Score for native cyprinid metric
BENINVSC	Score for benthic invertebrate feeder metric
SUNSC	Score for Lepomis sunfish metric
TOLSC	Score for pollution tolerance metric
OMNIVSC	Score for omnivorous species metric
INVERTSC	Score for invertebrate feeder metric
PISCIVSC	Score for piscivorous species metric
SEINESC	Score for proportion captured with seine metric
MINSC	Score for electrofishing minutes metric
NONNATSC	Score for nonnative species metric
ANOMSC	Score for Campostoma anomalum metric
IBI	IBI score
ALURANK	Aquatic Life Use (ALU) ranking

Table A4. Metrics used to calculate the index of biotic integrity (IBI) for fish communities.

Table A5. Correlation coefficients and p values for best fit environmental vectors describing relationships between landscape variables and fish community structure in the Cross Timbers ecoregion. Values are based on rotational vector fitting between environmental variables and NMS scores for each site.

	2006		2008	
Variable	r	р	r	р
BASIN	0.5624	0.0020	0.6867	0.0010
LAT_DS	0.6814	0.0020	0.8114	0.0010
LONG_DS	0.1714	0.6156	0.4774	0.0050
PRECIP	0.4212	0.0480	0.5094	0.0020
ELEV_M	0.0742	0.9049	0.4107	0.0410
WSLOPE	0.1630	0.6316	0.3144	0.1732
WSHEDKM2	0.6108	0.0010	0.6528	0.0010
DAMS_CT	0.5641	0.0020	0.7121	0.0010
OUT_MGD	0.4333	0.0350	0.4976	0.0090
OUT_CT	0.5670	0.0030	0.4858	0.0090
RESV_CT	0.5131	0.0030	0.2928	0.2092
RESV_PCT	0.4309	0.0240	0.2161	0.4525
WATER	0.3792	0.0771	0.5010	0.0030
DEV_TOT	0.4338	0.0340	0.4810	0.0090
FOR_TOT	0.4114	0.0521	0.3971	0.0631
SHRUB	0.2980	0.2312	0.5884	0.0010
GRASS	0.1508	0.6887	0.4994	0.0050
PASTURE	0.7490	0.0010	0.7685	0.0010
ROWCROP	0.5008	0.0110	0.3115	0.1682
WET_TOT	0.3305	0.1421	0.3699	0.0721
AG_TOT	0.6144	0.0010	0.4950	0.0070
IMP_PCT	0.3979	0.0601	0.3973	0.0440
CNPY_PCT	0.4448	0.0330	0.4450	0.0270

	2006		2008	
Variable	r	р	r	р
WETWIDTH	0.4072	0.0541	0.2048	0.4875
AVG_DEP	0.2585	0.3223	0.4461	0.0190
DISCHARG	0.4507	0.0170	0.3917	0.0581
FLOWSTAT	0.5970	0.0020	0.2336	0.3834
POOL_WID	0.5119	0.0050	0.2364	0.3604
POOL_DEP	0.2484	0.3594	0.2411	0.3594
STRMBEND	0.1351	0.7307	0.1225	0.7638
WELLBEND	0.1513	0.6877	0.1358	0.7267
MODBEND	0.0607	0.9359	0.1084	0.8218
POORBEND	0.3169	0.1542	0.1214	0.7518
VELDEPTH	0.5360	0.0030	0.3195	0.1502
NO_RIFF	0.6434	0.0010	0.1620	0.6557
EMBEDDED	0.2309	0.4114	0.3956	0.0541
GRV_LRG	0.1993	0.5445	0.4139	0.0320
BEDROCK	0.1200	0.7928	0.2072	0.4815
LG_BLDR	0.0494	0.9520	0.0730	0.9079
SM_BLDR	0.1383	0.6997	0.0293	0.9860
COBBLE	0.1170	0.8178	0.0813	0.8919
GRAVEL	0.1627	0.6697	0.4257	0.0310
SAND	0.2642	0.3083	0.2563	0.3103
MUDSILT	0.6326	0.0010	0.6178	0.0010
STRM_COV	0.3596	0.0811	0.2218	0.4074
FILA_ALG	0.1929	0.5285	0.3913	0.0571
MICRALG	0.3017	0.2192	0.4475	0.0290
MACRPHYT	0.1950	0.5445	0.2566	0.2923
LWD	0.1961	0.5285	0.4658	0.0160
SWD	0.2690	0.2733	0.0765	0.8969
ROOTS	0.1534	0.6597	0.2890	0.1992
OVR_VEG	0.4133	0.0450	0.1733	0.5596
UNDERCUT	0.0526	0.9499	0.1693	0.5946
LEAFPACK	0.4342	0.0360	0.2097	0.4825
BOULDER	0.1937	0.5135	0.0853	0.8579
ARTIFICL	0.4191	0.0410	0.3015	0.1702
COV_TYPE	0.0936	0.8549	0.0513	0.9499
CWD_WET	0.4735	0.0130	0.5578	0.0030
CWD_BKF	0.1935	0.5155	0.1112	0.7838
ROOT_WET	0.2132	0.4755	0.2670	0.2773
ROOT BKF	0.2492	0.3493	0.2566	0.3203

Table A6. Correlation coefficients and p values for best fit environmental vectors describing relationships between in-stream habitat variables and community structure in the ecoregion 29. Values are based on rotational vector fitting between variables and NMS scores for each site.

_	2006	5	200)8
Variable	r	р	r	р
EROSION	0.4367	0.0360	0.4312	0.0200
SOIL_EXP	0.4644	0.0170	0.3867	0.0531
BNK_SLOP	0.0917	0.8609	0.5393	0.0010
BUFFER	0.0653	0.9469	0.1540	0.6637
RIP_TREE	0.2817	0.2583	0.4143	0.0480
RIP_SHRB	0.0519	0.9510	0.2493	0.3243
RIP_GRAS	0.2850	0.2262	0.4209	0.0400
RIP_CULT	0.2397	0.3854	0.2849	0.2382
OTHER	0.0865	0.8739	0.1085	0.8098
CANOPY	0.2297	0.4244	0.3188	0.1421
AESTHET	0.1998	0.5135	0.4065	0.0390
ALGAE_AB	0.3577	0.1211	0.3718	0.0731
HAB_TYPE	0.4966	0.0070	0.2164	0.4234
MCRPH_AB	0.1682	0.6406	0.2475	0.3504
THAL_DEP	0.2129	0.4625	0.2833	0.2202
DO	0.1585	0.6426	0.2567	0.3083
PH	0.2540	0.3053	0.1247	0.7668
SPCOND	0.3012	0.1932	0.4123	0.0340
TEMP	0.2087	0.4525	0.3326	0.1241

Table A6 continued. Correlation coefficients and p values for relationships between fish community structure and in stream habitat variables in the Cross Timbers ecoregion.

Table A7. Correlation coefficents and p values for best fit environmental vectors describing relationships between HQI metrics and fish community structure in the Cross Timbers ecoregion. Values are based on rotational vector fitting between environmental variables and NMS scores for each site.

	2006		2008	
Variable	r	pval	r	pval
COV_SC	0.2041	0.4755	0.1877	0.5155
SUB_SC	0.2378	0.4204	0.3070	0.1892
RIFF_SC	0.6107	0.0010	0.0987	0.8549
POOL_SC	0.4172	0.0390	0.3625	0.0761
FLOW_SC	0.5970	0.0020	0.2336	0.3834
BANK_SC	0.2970	0.2182	0.5020	0.0070
SIN_SC	0.1364	0.7447	0.0417	0.9670
BUFF_SC	0.0849	0.8919	0.1544	0.6867
AEST_SC	0.1998	0.5135	0.2262	0.4024
HQI_SC	0.6171	0.0020	0.2408	0.3544

TableA8. Correlation coefficients and p values for best fit environmental vectors describing relationships between fish IBI metrics and community structure in the Cross Timbers ecoregion. Values are based on rotational vector fitting between environmental variables and NMS scores for each site.

	2006		20	08
Variable	r	pval	r	pval
RICHNESS	0.6625	0.0010	0.2557	0.3263
.NATCYPR	0.7026	0.0010	0.3892	0.0581
.BENTINV	0.3236	0.1321	0.0585	0.9359
.SUNFISH	0.3775	0.0741	0.3676	0.1001
.INTOL	0.6081	0.0010	0.2697	0.2472
X.TOL	0.3768	0.0821	0.5738	0.0010
X.OMNIV	0.1790	0.6036	0.1719	0.6086
X.INVERTI	0.1349	0.7327	0.6368	0.0010
X.PISCIV	0.3250	0.1592	0.7193	0.0010
.SEINE	0.3343	0.1321	0.5517	0.0050
.MIN	0.2581	0.3493	0.3056	0.1942
X.NONNAT	0.0987	0.8599	0.5111	0.0050
X.ANOM	0.4503	0.0210	0.1790	0.5826
RICHSC	0.5242	0.0080	0.3560	0.0991
CYPRSC	0.7207	0.0010	0.2510	0.3133
BENINVSC	0.2503	0.3153	0.1269	0.7668
SUNSC	0.1541	0.6426	0.4279	0.0490
TOLSC	0.2732	0.2893	0.5301	0.0040
OMNIVSC	0.3061	0.1351	0.2205	0.3964
INVERTSC	0.2190	0.4414	0.5836	0.0020
PISCIVSC	0.3094	0.1822	0.6024	0.0020
SEINESC	0.3207	0.1562	0.5087	0.0060
MINSC	0.1928	0.5425	0.3604	0.0961
NONNATSC	0.2224	0.4845	0.3432	0.1441
ANOMSC	0.7071	0.4024	0.3522	0.0961
IBI	0.3756	0.0971	0.1591	0.6637
ALURANK	0.3599	0.1111	0.1860	0.5455

	2006		2008	
Variable	r	р	r	р
BASIN	0.3767	0.5195	0.5432	0.2723
LAT_DS	0.4625	0.3804	0.6491	0.1191
LONG_DS	0.3877	0.4675	0.5389	0.2683
PRECIP	0.3348	0.5706	0.5538	0.2322
ELEV_M	0.4849	0.3363	0.3295	0.6126
WSLOPE	0.3917	0.5235	0.3502	0.5846
WSHEDKM2	0.6151	0.1692	0.5809	0.1932
DAMS_CT	0.4284	0.4274	0.4262	0.4565
OUT_MGD	0.3512	0.5285	0.4886	0.3554
OUT_CT	0.4047	0.4875	0.4729	0.3724
RESV_CT	0.2187	0.7057	0.5801	0.2603
RESV_PCT	0.2187	0.7237	0.5801	0.2392
WATER	0.6220	0.1522	0.5967	0.1712
DEV_TOT	0.8752	0.0030	0.6728	0.0991
FOR_TOT	0.2923	0.6977	0.0392	0.9970
SHRUB	0.3836	0.4715	0.2759	0.7187
GRASS	0.4763	0.3393	0.3697	0.5666
PASTURE	0.7647	0.0220	0.6328	0.1381
ROWCROP	0.3440	0.6607	0.1229	0.9359
WET_TOT	0.4624	0.3914	0.4541	0.3764
AG_TOT	0.4620	0.3754	0.4934	0.3323
IMP_PCT	0.8004	0.0160	0.7744	0.0250
CNPY PCT	0.2131	0.8278	0.1283	0.9489

Table A9. Correlation coefficients and p-values for relationships between fish community structure and landscape variables in the Blackland prairie ecoregion.

	200	6	20	08
Variable	r	р	r	р
WETWIDTH	0.1340	0.9309	0.3892	0.5295
AVG_DEP	0.7145	0.0611	0.6121	0.1582
DISCHARG	0.5328	0.2683	0.7242	0.0541
FLOWSTAT	0.4335	0.4414	0.7729	0.0210
POOL_WID	0.4224	0.4815	0.2401	0.7628
POOL_DEP	0.3108	0.7107	0.4809	0.3493
STRMBEND	0.1293	0.9289	0.1393	0.9349
WELLBEND	0.5864	0.1872	0.4046	0.4474
MODBEND	0.5552	0.2202	0.4613	0.3874
POORBEND	0.2404	0.7958	0.1921	0.8539
VELDEPTH	0.5494	0.2282	0.3885	0.5175
NO_RIFF	0.8667	0.0040	0.7521	0.0270
EMBEDDED	0.4706	0.3313	0.8256	0.0070
GRV_LRG	0.4408	0.4344	0.7681	0.0350
BEDROCK	0.6883	0.0731	0.5400	0.2633
LG_BLDR	0.3831	0.4414	0.3076	0.5135
SM_BLDR	0.5308	0.2533	0.3697	0.5385
COBBLE	0.7695	0.0260	0.7574	0.0320
GRAVEL	0.1656	0.8769	0.7313	0.0561
SAND	0.5692	0.2142	0.3280	0.6386
MUDSILT	0.3528	0.5896	0.7647	0.0340
STRM_COV	0.3829	0.5425	0.6164	0.1542
FILA_ALG	0.4867	0.3243	0.5939	0.1742
MICRALG	0.5024	0.3183	0.1374	0.9019
MACRPHYT	0.3868	0.5245	0.2411	0.7347
LWD	0.5204	0.2803	0.8985	0.0050
SWD	0.1786	0.8639	0.4631	0.3854
ROOTS	0.3448	0.5646	0.4200	0.4925
OVR_VEG	0.5479	0.2533	0.1814	0.8799
UNDERCUT	0.2934	0.6436	0.0660	0.9850
LEAFPACK	0.2743	0.7177	0.5969	0.1782
BOULDER	0.4052	0.4585	0.6368	0.1231
ARTIFICL	0.6105	0.1632	0.6053	0.1491
COV_TYPE	0.1482	0.8969	0.1177	0.9429
CWD_WET	0.2521	0.7558	0.4335	0.4364
CWD_BKF	0.2266	0.7918	0.2757	0.7447
ROOT_WET	0.6208	0.1161	0.4515	0.4224
ROOT_BKF	0.7765	0.0230	0.2125	0.8258

Table A10. Correlation coefficents and p values for relationships between fish community structure and in stream habitat variables in the Blackland prairie ecoregion.

	2006	200		
Variable	r	р	r	р
EROSION	0.2087	0.8498	0.3446	0.5946
SOIL_EXP	0.2174	0.8348	0.3881	0.5085
BNK_SLOP	0.6120	0.1251	0.6217	0.1351
BUFFER	0.1063	0.9620	0.3304	0.6236
RIP_TREE	0.1577	0.8899	0.1799	0.8869
RIP_SHRB	0.1832	0.8569	0.7322	0.0340
RIP_GRAS	0.1652	0.8979	0.5262	0.2883
OTHER	0.5014	0.2402	0.4932	0.3323
CANOPY	0.4502	0.4054	0.4224	0.4625
AESTHET	0.4229	0.4675	0.4012	0.4975
ALGAE_AB	0.3037	0.6837	0.1554	0.9019
HAB_TYPE	0.5023	0.3373	0.8396	0.0100
MCRPH_AB	0.4182	0.4414	0.2321	0.7678
THAL_DEP	0.6509	0.1191	0.7857	0.0230
DO	0.4543	0.3353	0.5024	0.3243
PH	0.2114	0.8218	0.3901	0.5435
SPCOND	0.2103	0.8649	0.4398	0.4525
TEMP	0.3893	0.5135	0.0734	0.9840

Table A10 continued. Correlation coefficients and p values for relationships between fish community structure and in stream habitat variables in the Blackland prairie ecoregion.

Table A11. Correlation coefficients and p values for relationships between fish community structure and in habitat metric scores in the Blackland prairie ecoregion.

	2006		2008	
Variable	r	pval	r	pval
COV_SC	0.4605	0.3964	0.5514	0.2372
SUB_SC	0.5660	0.2002	0.8319	0.0070
RIFF_SC	0.9091	0.0020	0.7538	0.0270
POOL_SC	0.3219	0.7177	0.4663	0.4284
FLOW_SC	0.4335	0.4414	0.7729	0.0210
BANK_SC	0.3990	0.5055	0.6478	0.1181
SIN_SC	0.5864	0.1882	0.4046	0.4474
BUFF_SC	0.1583	0.9029	0.5195	0.3413
AEST_SC	0.4229	0.4675	0.4012	0.4985
HQI_SC	0.5412	0.2472	0.3550	0.5726

	2006		2008		
Variable	r	pval	r	pval	
RICHNESS	0.7780	0.0210	0.3187	0.6607	
NATCYPR	0.6705	0.0911	0.5648	0.2302	
BENTINV	0.3766	0.5395	0.4024	0.5255	
SUNFISH	0.7540	0.0280	0.5717	0.1962	
%INTOL	0.3356	0.6647	0.1723	0.8919	
%TOL	0.6015	0.1602	0.6080	0.1632	
%OMNIV	0.7382	0.0531	0.5236	0.2983	
%INVERTI	0.5244	0.2813	0.2542	0.7608	
%PISCIV	0.7448	0.0460	0.6489	0.1171	
.SEINE	0.4202	0.4885	0.6332	0.1281	
.MIN	0.6533	0.0921	0.6243	0.1351	
%NONNAT	0.5367	0.2793	0.7870	0.0130	
X.ANOM	0.2600	0.7357	0.3769	0.5526	
RICHSC	0.7535	0.0270	0.2322	0.7928	
CYPRSC	0.6806	0.0801	0.5592	0.2422	
BENINVSC	0.3766	0.5395	0.4052	0.5225	
SUNSC	0.7876	0.0210	0.4879	0.3093	
TOLSC	0.4607	0.3914	0.5822	0.2182	
OMNIVSC	0.6179	0.1842	0.3127	0.6316	
INVERTSC	0.4837	0.3744	0.7592	0.3433	
PISCIVSC	0.6204	0.1281	0.5671	0.2022	
SEINESC	0.3139	0.7107	0.2953	0.7247	
MINSC	0.6208	0.1421	0.6894	0.0711	
NONNATSC	0.6157	0.1832	0.7027	0.0821	
ANOMSC	0.3563	0.5445	0.2492	0.7618	
IBI	0.5044	0.3203	0.4660	0.3684	
ALURANK	0.5141	0.3143	0.3149	0.6256	

Table A12. Correlation coefficients and p values for relationships between fish community structure and in index of biotic integrity metric scores in the Blackland prairie ecoregion.

	2006		2008	
Variable	r	р	r	р
BASIN	0.6213	0.0611	0.5454	0.1031
LAT_DS	0.4075	0.3353	0.2365	0.7057
LONG_DS	0.5870	0.0891	0.5400	0.1351
PRECIP	0.5837	0.0911	0.6565	0.0360
ELEV_M	0.5459	0.1111	0.4831	0.2072
WSLOPE	0.7673	0.0080	0.6916	0.0160
WSHEDKM2	0.1762	0.8278	0.6224	0.0470
DAMS_CT	0.2155	0.7658	0.2345	0.7067
OUT_MGD	0.3355	0.4995	0.3167	0.5475
OUT_CT	0.1835	0.8128	0.2185	0.7578
RESV_CT	0.3134	0.5235	0.3706	0.4154
RESV_PCT	0.3355	0.4995	0.7641	0.0240
WATER	0.1692	0.8458	0.6979	0.0220
DEV_TOT	0.2272	0.7528	0.2415	0.6947
FOR_TOT	0.6804	0.0280	0.5848	0.0751
SHRUB	0.1878	0.8038	0.2190	0.7357
GRASS	0.3306	0.5165	0.3107	0.5335
PASTURE	0.6704	0.0290	0.4675	0.2222
ROWCROP	0.6461	0.0450	0.8650	0.0040
WET_TOT	0.8707	0.0010	0.7558	0.0070
AG_TOT	0.8099	0.0030	0.6795	0.0220
IMP_PCT	0.3829	0.3744	0.3762	0.3814
CNPY_PCT	0.8030	0.0040	0.7014	0.0160

Table A13. Correlation coefficients and p values for relationships between fish community structure and landscape variables in the East Central Texas plains ecoregion.

	2006		2008		
Variable	r	р	r	р	
WETWIDTH	0.4888	0.2052	0.3750	0.3814	
AVG_DEP	0.4476	0.2723	0.5637	0.0921	
DISCHARG	0.5527	0.1201	0.4229	0.3043	
FLOWSTAT	0.5032	0.1822	0.2699	0.6386	
POOL_WID	0.2503	0.6697	0.3755	0.4014	
POOL_DEP	0.2556	0.6577	0.0690	0.9700	
STRMBEND	0.7852	0.0020	0.1097	0.9279	
WELLBEND	0.4033	0.3173	0.2358	0.7187	
MODBEND	0.5250	0.1311	0.3634	0.4454	
POORBEND	0.3442	0.4424	0.4408	0.2703	
VELDEPTH	0.5069	0.1742	0.5367	0.1311	
NO_RIFF	0.2584	0.6677	0.4897	0.1622	
EMBEDDED	0.2415	0.6847	0.4716	0.2142	
GRV_LRG	0.5062	0.1622	0.4664	0.2252	
BEDROCK	0.5701	0.0881	0.4764	0.1792	
LG_BLDR	0.5964	0.1251	0.5220	0.2102	
SM_BLDR	0.5178	0.1401	0.4726	0.1792	
COBBLE	0.2590	0.6837	0.7417	0.0140	
GRAVEL	0.2879	0.6006	0.2913	0.6096	
SAND	0.5536	0.1121	0.3378	0.4895	
MUDSILT	0.5460	0.1191	0.7454	0.0160	
STRM_COV	0.4676	0.2282	0.3904	0.3323	
FILA_ALG	0.3053	0.5325	0.6389	0.0400	
MICRALG	0.2973	0.5536	0.1318	0.9049	
MACRPHYT	0.3365	0.5025	0.2872	0.6326	
LWD	0.7563	0.0060	0.2665	0.6496	
SWD	0.6503	0.0501	0.7885	0.0050	
ROOTS	0.6256	0.0631	0.2412	0.7147	
OVR_VEG	0.3534	0.4535	0.5873	0.0841	
UNDERCUT	0.4613	0.2272	0.2045	0.7708	
LEAFPACK	0.3764	0.4124	0.6813	0.0350	
BOULDER	0.5431	0.1071	0.7389	0.0140	
ARTIFICL	0.6132	0.0440	0.3978	0.3283	
COV_TYPE	0.7102	0.0200	0.3862	0.3574	
CWD_WET	0.5668	0.0961	0.3743	0.4164	
CWD_BKF	0.5513	0.1091	0.8084	0.0050	
ROOT_WET	0.3393	0.4835	0.2343	0.7197	
ROOT_BKF	0.2829	0.6196	0.6121	0.0721	

Table A14. Correlation coefficients and p values for relationships between fish community structure and in stream habitat variables in the East Central Texas plains ecoregion.

	2006		2008	
Variable	r	р	r	р
EROSION	0.4717	0.2132	0.0616	0.9770
SOIL_EXP	0.3825	0.3804	0.0284	0.9900
BNK_SLOP	0.2765	0.6386	0.2805	0.6166
BUFFER	0.1756	0.8408	0.4057	0.3293
RIP_TREE	0.5531	0.1141	0.2989	0.5816
RIP_SHRB	0.5120	0.1722	0.1836	0.8118
RIP_GRAS	0.7266	0.0160	0.4904	0.2252
RIP_CULT	0.1380	0.8899	NA	1.0000
OTHER	NA	1.0000	0.7405	0.0110
CANOPY	0.4815	0.2012	0.8267	0.0080
AESTHET	0.2203	0.7538	0.1390	0.9109
ALGAE_AB	0.2678	0.6386	0.6506	0.0330
HAB_TYPE	0.7334	0.0180	0.6921	0.0170
MCRPH_AB	0.4473	0.2623	0.3598	0.4394
THAL_DEP	0.4028	0.3944	0.5185	0.1421
DO	0.5134	0.1742	0.8943	0.0010
PH	0.5784	0.0811	0.6814	0.0350
SPCOND	0.1762	0.8398	0.3396	0.4925
TEMP	0.2481	0.6967	0.5501	0.1191

Table A14 continued. Correlation coefficients and p values for relationships between fish community structure and in stream habitat variables in the East central Texas plains ecoregion.

Table A15. coefficients and p values for relationships between fish community structure and in habitat metric scores in the East central Texas plains ecoregion.

	2006		2008	3
Variable	r	pval	r	pval
COV_SC	0.4027	0.3113	0.2078	0.7588
SUB_SC	0.4436	0.2653	0.4417	0.2573
RIFF_SC	0.2026	0.7868	0.4620	0.2172
POOL_SC	0.3764	0.3804	0.2502	0.7427
FLOW_SC	0.5032	0.1822	0.2699	0.6386
BANK_SC	0.5960	0.0871	0.2340	0.7157
SIN_SC	0.6330	0.0551	0.2493	0.6907
BUFF_SC	0.3126	0.5425	0.3780	0.3844
AEST_SC	0.2203	0.7538	0.1390	0.9099
HQI_SC	0.1828	0.8358	0.3492	0.4474

	2006		2008		
Variable	r	pval	r	pval	
RICHNESS	0.2898	0.5596	0.6965	0.0200	
NATCYPR	0.1713	0.8248	0.8760	0.0010	
BENTINV	0.1573	0.8669	0.6907	0.0300	
SUNFISH	0.6949	0.0160	0.4344	0.2863	
%INTOL	0.2333	0.7247	0.6682	0.0320	
%TOL	0.8676	0.0030	0.9371	0.0010	
%OMNIV	0.1788	0.8318	0.2431	0.7007	
%INVERTI	0.5571	0.1081	0.6237	0.0521	
%PISCIV	0.7191	0.0120	0.7602	0.0090	
.SEINE	0.6060	0.0611	0.7781	0.0060	
.MIN	0.4048	0.3534	0.6328	0.0480	
%NONNAT	NA	1.0000	0.1354	0.7968	
X.ANOM	0.1960	0.7728	0.4652	0.2442	
RICHSC	0.1706	0.8218	0.7068	0.0160	
CYPRSC	0.2350	0.7017	0.7707	0.0080	
BENINVSC	0.3096	0.4284	0.4007	0.3614	
SUNSC	0.7510	0.0050	0.2715	0.5686	
INTOLSC	0.3342	0.4755	0.4275	0.2813	
TOLSC	0.8741	0.0010	0.8581	0.0010	
OMNIVSC	0.1322	0.9199	0.0491	0.9890	
INVERTSC	0.6350	0.7277	0.6418	0.5145	
PISCIVSC	0.4768	0.2372	0.5185	0.1572	
SEINESC	0.5158	0.1331	0.6173	0.0591	
MINSC	0.6417	0.7277	0.6078	0.1221	
NONNATSC	0.6350	0.7277	0.6418	0.5145	
ANOMSC	0.2913	0.5986	0.3451	0.4855	
IBI	0.4612	0.2372	0.5138	0.1692	
ALURANK	0.3265	0.4935	0.4387	0.2833	

Table A16. Correlation coefficients and p values for relationships between fish community structure and in index of biotic integrity metric scores in the East central Texas ecoregion.

	Ecoregion 29		Ecoregi	ion 32	Ecoregion 33	
	r	pval	r	pval	r	Pval
BASIN	0.3710	0.0030	0.7961	0.0030	0.5350	0.0050
LAT_DS	0.5853	0.0010	0.8631	0.0010	0.3180	0.1712
LONG_DS	0.1682	0.2973	0.6884	0.0080	0.6044	0.0020
PRECIP	0.1061	0.6156	0.4917	0.1181	0.6943	0.0010
ELEV_M	0.3711	0.0030	0.8267	0.0010	0.5717	0.0040
WSLOPE	0.2890	0.0310	0.7168	0.0080	0.7345	0.0010
WSHEDKM2	0.3600	0.0040	0.5421	0.0651	0.5729	0.0030
DAMS_CT	0.6284	0.0010	0.2999	0.4895	0.0526	0.9399
OUT_MGD	0.3778	0.0030	0.6672	0.0150	0.2939	0.2462
OUT_CT	0.2917	0.0240	0.5614	0.0611	0.2283	0.4314
RESV_CT	0.1185	0.5646	NA	1.0000	0.3823	0.0641
RESV_PCT	0.1265	0.5145	NA	1.0000	0.6698	0.0010
WATER	0.3447	0.0150	0.2675	0.5836	0.6351	0.0010
DEV_TOT	0.1528	0.3844	0.8574	0.0010	0.3214	0.1582
FOR_TOT	0.1680	0.3103	0.7583	0.0040	0.6626	0.0010
SHRUB	0.1365	0.4715	0.6885	0.0090	0.2741	0.2783
GRASS	0.2129	0.1562	0.1845	0.7598	0.6238	0.0010
PASTURE	0.5640	0.0010	0.8567	0.0010	0.6470	0.0010
ROWCROP	0.1912	0.2092	0.6701	0.0130	0.7962	0.0010
WET_TOT	0.2642	0.0581	0.5130	0.1121	0.7798	0.0010
AG_TOT	0.2623	0.0561	0.2489	0.6156	0.7391	0.0010
IMP_PCT	0.3061	0.0230	0.8692	0.0010	0.4881	0.0150
CNPY_PCT	0.1992	0.1832	0.8275	0.0010	0.7585	0.0010
WETWIDTH	0.2111	0.1612	0.4235	0.2573	0.2757	0.2693
AVG_DEP	0.4102	0.0010	0.5564	0.0601	0.5708	0.0020
DISCHARG	0.6735	0.0010	0.3202	0.4/15	0.4782	0.0100
FLOWSIAI	0.5542	0.0010	0.1822	0.7618	0.2948	0.2222
POOL_WID	0.0671	0.8338	0.4613	0.1702	0.3191	0.1652
	0.3823	0.0030	0.5779	0.0460	0.3303	0.1552
SIRMBEND	0.1957	0.1922	0.1039	0.9269	0.3294	0.1662
WELLBEND	0.1758	0.2733	0.1011	0.9359	0.1684	0.6266
MODBEND	0.0734	0.8088	0.5137	0.0911	0.2756	0.2903
	U. 1448	0.4104	0.0000		U.43// 0.4776	0.0270
	U.304/ 0.2400	0.0030	0.2211		U.4//0 0 4422	0.0120
	U.J18U	0.0120	0.7471		U.4432	0.0230
CINIBEDDED	U.2100	0.1502	0.5770	0.0571	0.3003	0.1021

Table A17. Correlation coefficients and p values for relationships between fish community structure landscape variables, habitat variables, and HQI scores for all three years by ecoregion.

Table A17 continued.

	Ecoregi	on 29	Ecoregi	ion 32	on 32 Ecoregio		
	r	pval	r	pval	r	pval	
GRV_LRG	0.3453	0.0080	0.5735	0.0611	0.6242	0.0010	
BEDROCK	0.2446	0.0811	0.6094	0.0410	0.5131	0.0100	
LG_BLDR	0.1015	0.6446	NA	1.0000	0.4860	0.0170	
SM_BLDR	0.1946	0.2162	0.4685	0.1632	0.5627	0.0070	
COBBLE	0.1568	0.3794	0.6169	0.0370	0.6376	0.0010	
GRAVEL	0.2985	0.0280	0.5655	0.0541	0.4468	0.0250	
SAND	0.3137	0.0120	0.7556	0.0030	0.4697	0.0140	
MUDSILT	0.4852	0.0010	0.2961	0.5015	0.5775	0.0040	
STRM_COV	0.2193	0.1381	0.0882	0.9319	0.2510	0.3253	
FILA_ALG	0.2927	0.0190	0.2355	0.6366	0.3253	0.1491	
MICRALG	0.4008	0.0020	0.3596	0.3483	0.2651	0.3033	
MACRPHYT	0.5032	0.0010	0.1708	0.7738	0.3426	0.1171	
LWD	0.3332	0.0070	0.3154	0.4484	0.7140	0.0010	
SWD	0.1861	0.2442	0.1286	0.8839	0.3443	0.1201	
ROOTS	0.2502	0.0741	0.1718	0.7938	0.0850	0.8919	
OVR_VEG	0.2015	0.1792	0.0953	0.9359	0.1091	0.8298	
UNDERCUT	0.2232	0.1221	0.2778	0.5596	0.0677	0.9249	
LEAFPACK	0.2455	0.0741	0.0614	0.9770	0.2710	0.2843	
BOULDER	0.1806	0.2633	0.1851	0.7528	0.5087	0.0150	
ARTIFICL	0.2530	0.0521	0.7824	0.0020	0.1675	0.6476	
COV_TYPE	0.1911	0.2402	0.2100	0.7217	0.3446	0.1291	
CWD_WET	0.4406	0.0010	0.2234	0.6657	0.4971	0.0140	
CWD_BKF	0.1283	0.5155	0.5767	0.0591	0.4914	0.0050	
ROOT_WET	0.3270	0.0190	0.1594	0.8188	0.2417	0.3974	
ROOT_BKF	0.3916	0.0020	0.3708	0.3183	0.3589	0.0901	
EROSION	0.3952	0.0020	0.3821	0.3093	0.1688	0.6356	
SOIL_EXP	0.3671	0.0050	0.4115	0.2452	0.2415	0.3724	
BNK_SLOP	0.2816	0.0350	0.2693	0.5856	0.3662	0.0961	
BUFFER	0.4067	0.0020	0.4858	0.1401	0.1511	0.6917	
RIP_TREE	0.3706	0.0040	0.3952	0.2853	0.4349	0.0390	
RIP_SHRB	0.2696	0.0380	0.2643	0.5886	0.3347	0.1401	
RIP_GRAS	0.3592	0.0060	0.5658	0.0761	0.6189	0.0010	
	0.4235	0.0030	NA	1.0000	0.1516	0.7267	
OTHER	0.2305	0.0981	0.4311	0.2022	0.5368	0.0060	
CANOPY	0.2478	0.0831	0.6971	0.0120	0.7884	0.0010	
AESTHET	0.4177	0.0020	0.3829	0.3213	0.1701	0.5896	

	Ecoregion 29		Ecoregi	ion 32	on 32 Ecoregio	
	r	pval	r	pval	r	pval
ALGAE_AB	0.4759	0.0010	0.0725	0.9620	0.3801	0.0871
HAB_TYPE	0.4549	0.0010	0.7520	0.0030	0.7226	0.0010
MCRPH_AB	0.4448	0.0010	0.3360	0.4114	0.4674	0.0080
THAL_DEP	0.3616	0.0030	0.5775	0.0541	0.5614	0.0030
DO	0.3396	0.0110	0.1928	0.7688	0.6716	0.0010
PH	0.2091	0.1652	0.6762	0.0160	0.6182	0.0020
SPCOND	0.4851	0.0010	0.4590	0.1742	0.1738	0.6136
TEMP	0.1476	0.4004	0.4679	0.1622	0.2161	0.4715
COV_SC	0.1717	0.2973	0.0385	0.9920	0.1800	0.5656
SUB_SC	0.3030	0.0260	0.7409	0.0060	0.6296	0.0010
RIFF_SC	0.3004	0.0230	0.6535	0.0150	0.3613	0.1171
POOL_SC	0.4456	0.0010	0.5830	0.0501	0.3162	0.1682
FLOW_SC	0.5542	0.0010	0.1822	0.7618	0.2948	0.2222
BANK_SC	0.4500	0.0010	0.2765	0.5596	0.4678	0.0160
SIN_SC	0.2306	0.0971	0.1263	0.8739	0.2017	0.4965
BUFF_SC	0.2889	0.0290	0.3819	0.3143	0.1325	0.7538
AEST_SC	0.3675	0.0060	0.3829	0.3213	0.1701	0.5896
HQI_SC	0.3815	0.0030	0.3139	0.4585	0.2643	0.2813
YEAR	0.2993	0.0130	0.2081	0.7297	0.1195	0.7738

Table A17 continued.