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CARMEN G. MONTAÑA,1,3 KIRK O. WINEMILLER,1 AND ANDREW SUTTON
2

1Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258 USA
2Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843 USA

Abstract. Community assembly is affected by environmental filtering that restricts viable
phenotypes and by species interactions that impose limits on interspecific trait similarity.
Relative influences of these processes should vary according to habitat features and dispersal.
Species dispersion within assemblage trait space also should vary in relation to species
richness, strength of competition, and the spatiotemporal scale of analysis. We examined
ecomorphological diversity of two freshwater fish families (Neotropical Cichlidae, Nearctic
Centrarchidae) to test theories of local assembly from regional species pools and theories of
species packing within mesohabitat patches. Cichlid and centrarchid assemblages were
surveyed in four floodplain rivers (two in South America and two in North America) during
low-water periods when fish densities are highest. Surveys were conducted in four mesohabitat
types (submerged wood, leaf litter, rocks, sand bank) within river channels and floodplain
lakes. We measured 23 morphological traits associated with locomotion and feeding. Principal
components analysis was performed on the species3 traits matrix, and species axis scores were
used to calculate species pairwise Euclidean distances and indices of dispersion within
assemblage morphospace: mean nearest-neighbor distance (indicating similarity), mean
distance to centroid (assemblage morphospace size), and standard deviation of nearest-
neighbor distance (evenness of dispersion within assemblage morphospace). A null model was
used to assess whether patterns were significantly nonrandom. When data for all mesohabitat
types were combined for each river, species were significantly overdispersed and the
assemblage morphospace was larger than predicted at random in every case. Analysis of
assemblages within mesohabitat patches of different types revealed, in every case, significant
overdispersion of species in morphospace indicative of limiting similarity. The total
assemblage morphospace was greater than expected for tropical cichlids, but not for
temperate centrarchids. Trends of species dispersion with assemblage morphospace in relation
to species richness within mesohabitat patches were not consistent among or within river
systems, possibly indicating that patches were already saturated with these perciform fishes.
Interregional comparisons suggest an influence from both adaptive diversification and
environmental filtering at broad spatial scales. At the scale of mesohabitat patches in lowland
rivers, cichlid and centrarchid assemblages revealed patterns of trait complementarity that
imply limiting similarity and strong influence of biotic interactions.

Key words: Centrarchidae; Cichlidae; environmental filtering; functional trait; limiting similarity;
Neartic; Neotropics; niche complementarity; Peru; species packing; Texas; Venezuela.

INTRODUCTION

Patterns of species richness and community structure

derive from interactions between regional and local

processes (Cornell and Lawton 1992, Ricklefs 2004,

Algar et al. 2011) and constraints set by historical

biogeography (Ricklefs and Schluter 1993, Ricklefs and

Renner 2012). Different processes may influence assem-

blage taxonomic and functional structure depending on

the spatial scale of analysis (Levin 1992, Oberdorff et al.

1995, Huston 1999, Vellend 2010). At broad scales

(regional to global), abiotic environmental factors and

historical biogeography are major determinants of

biodiversity (Jackson et al. 2001, Algar et al. 2011),

whereas at local scales, community assembly and

population persistence should be strongly influenced

by productivity, environmental stress, habitat complex-

ity, and species interactions (Huston 1999, Brooker et al.

2009). When biotic interactions are strong, species

coexistence may be facilitated by functional trait

complementarity that gives rise to resource partitioning

(Hutchinson 1959, MacArthur and Levins 1967, Pianka

1974, Losos et al. 2003, Kahmen et al. 2006). The

relative importance of regional vs. local processes on

community composition has long been hypothesized to

differ between tropical and temperate regions (Dob-

zhansky 1950). In the tropics, species tend to reveal a
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greater variety of specialized ecological traits that

appear to derive from selection associated with species

interactions, such as competition, predation, parasitism,

and mutualism, whereas in temperate regions, spatial

and environmental filters seem to account for a greater

proportion of trait variation within local communities,

and species interactions may be less influential (Jackson

et al. 2001, Ricklefs 2009, Schemske et al. 2009).

Morphological approaches have been used to com-

pare assemblage structure between continents (Ricklefs

and Travis 1980, Winemiller 1991, Lamouroux et al.

2002, Silva and Brandao 2010, Inward et al. 2011,

Ricklefs 2012), reveal patterns of convergence and

divergence (Winemiller et al. 1995, Losos et al. 2003,

Gillespie 2004, Stayton 2006), and examine assemblage

structure in relation to habitat complexity (Willis et al.

2005, Montaña and Winemiller 2010). Morphological

data have been used to infer the relative importance of

environmental filtering vs. limiting similarity in struc-

turing species assemblages (Weiher et al. 1998, 2011,

Moreno et al. 2006, Mouillot et al. 2007, Ingram and

Shurin 2009, Baraloto et al. 2012, Mouchet et al. 2012,

Wilson and Stubbs 2012). Environmental filtering results

in assemblages of coexisting species that are more

similar than expected by chance, either because of

shared ancestry or evolutionary convergence. Environ-

mental conditions constrain the sets of functional traits

required to achieve positive fitness, and resulting species

assemblages have high functional redundancy. In

contrast, the limiting similarity theory predicts that

species with sufficiently similar traits and ecological

requirements are unable to coexist when resources are

limiting, and coexisting species should be less similar

than expected by chance and have high functional

complementarity to reduce interspecific competition

(MacArthur and Levin 1967). Weiher and Keddy

(1995) postulated that limiting similarity should have

greater importance at smaller spatial scales, whereas

environmental filtering should predominate at larger

spatial scales. Tests of these predictions for fish

assemblages have produced variable results. Schlosser

(1987), Peres-Neto (2004), and Mouchet et al. (2012)

concluded that habitat features act as local filters

regulating co-occurrence of fish species with similar

traits. Competition seems to account for structure of fish

assemblages in temperate streams (Winston 1995), and

predation has been shown to influence fish assemblage

structure at the patch (mesohabitat) scale in both

tropical rivers (Layman and Winemiller 2004, Petry et

al. 2010) and temperate streams (Power and Matthews

1983, Schlosser 1988).

As species richness within a habitat patch increases,

patterns of species dispersion within assemblage mor-

phological space (morphospace) and the size of this

space could change in two ways (Fig. 1). When new

species are added to a local community, the total

assemblage morphospace could remain constant while

average similarity of species increases: a pattern that

would infer weak competition. Alternatively, under a

competition scenario, the addition of species to a habitat

FIG. 1. Theoretical models of species distribution in morphological space and the relationships with species richness, showing
original species in morphological space (solid circles), new species added (open circles), niche volume (solid lines), and species
dissimilarities (dashed lines). (a–c) Under the niche compression model, average similarity among species increases as new species
are added to the assemblage, with total morphological niche volume remaining relatively constant. (d–f ) Under the niche expansion
model, average differences among species remain relatively constant as new species are added, and assemblage morphological niche
volume increases as species richness increases.
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patch could result in resource partitioning (MacArthur

1971, Pianka 1974) associated with no change in average

species similarity and an expanded assemblage morpho-

space, a more even dispersion of species within the

morphospace, or both (Fig. 1; Ricklefs and Miles 1994).

A classic study by Werner (1977) found that three North

American sunfishes (Lepomis spp.) had similar niches

when occurring alone in ponds, but when stocked in

ponds together, these species underwent shifts in habitat

use and feeding that resulted in interspecific niche

segregation (niche complementarity). Ricklefs and

Travis (1980) found that similarity of bird species within

assemblage morphospace was relatively constant, but

the periphery of assemblage morphospace expanded

with increasing species richness. Other studies involving

fishes (Winemiller 1991), lizards (Ricklefs et al. 1981),

and bats (Stevens et al. 2006) also revealed an expanded

morphospace for assemblages with greater species

richness.

The expansion of assemblage morphospace has been

interpreted as an expansion of niche space (e.g., Douglas

and Matthews 1992) or alternatively as morphological

diversification associated with ecological specialization

and niche partitioning with or without expansion of

community niche space (e.g., Winemiller 1991). Ricklefs

(2012) estimated assemblage morphospace of passerine

birds from 11 zoogeographic regions and found no

relationship with species richness at either the scale of

local species assemblage or regional avifauna, although

there was a weak relationship with average number of

species per family. Species of regional faunas were not

evenly distributed in morphospace, and regions revealed

much convergence. He inferred that species interactions

posed little constraint on local and regional assemblage

structure, and evolutionary diversification, extinction,

and dispersal limitation had greatest influence.

To test ecological theories of community assembly

and structure, we analyzed morphological patterns

among species of two perciform fish families that are

widely distributed and common in rivers of South and

North America. We examined patterns at two spatial

scales: regional (rivers) and local (mesohabitat patches

within the river channel and floodplain lakes). Specifi-

cally, we asked whether or not species coexisting in

mesohabitats were more or less similar than predicted at

random (niche filtering vs. limiting similarity), whether

there was evidence of assemblage morphospace expan-

sion, and also whether species similarity and dispersion

and the total assemblage morphospace was correlated

with species richness at either of the two spatial scales.

We chose perciform fishes in the families Cichlidae

(South America) and Centrarchidae (North America) as

model taxa because of their ecological and morpholog-

ical similarities (Norton and Brainerd 1993, Montaña

and Winemiller 2013) and also because they are diverse

and common fishes inhabiting freshwater habitats. The

Neotropical clade of the Cichlidae has about 600 species

that reveal a high degree of morphological and

ecological diversification (López-Fernández et al.

2012), with many species often coexisting at the local
scale (e.g., Winemiller et al. 1995, Montaña and Wine-

miller 2010). The Centrarchidae (sunfishes and black
basses) has eight genera and 34 species that are

morphologically diverse and inhabit freshwater habitats
throughout most of North America (Cook and Phillip
2009). We therefore predicted that Neotropical cichlids

could be more tightly packed within local assemblage
morphospace or have an expanded morphospace

compared with temperate centrarchids within similar
habitats. We employed multivariate techniques to

quantify the morphological space occupied by species
within each macrohabitat and mesohabitat. To test for

statistical significance of patterns, we developed null
models to contrast observed patterns with those derived

from randomized data from computer simulations.

MATERIALS AND METHODS

Study sites and field data collection

We conducted this study in four lowland rivers: two in
South America (the Cinaruco and the Tambopata) and

two in North America (the Neches and the Brazos).
These rivers were chosen for comparison to provide

similar environmental conditions in terms of geomor-
phology, sediments, and water quality. The Cinaruco

River (study area centered at approximately 68320 N,
678240 W) and the Neches (308350 N, 948080 W) have

clear but stained waters, with sandy substrates, low pH,
and high transparency (Montoya et al. 2006, Stamatis

2007). The Cinaruco River is a tributary of the Orinoco
River in the Venezuelan llanos of Apure, southern

Venezuela, whereas the Neches River in Texas (USA)
originates in eastern Van Zandt County, and flows to its

mouth at Sabine Lake, an inlet of the Gulf of Mexico.
The Tambopata River (study area centered at approx-
imately 128720 N, 698280 W) and the Brazos River

(308370 N, 968370 W) are similar to each other, with
neutral pH, high loads of suspended sediments of fine

grain size, and high turbidity during high flow condi-
tions that limits aquatic primary production (Barthem et

al. 2003, Zeug et al. 2005). The Tambopata River
originates in the Andes Mountains and drains into the

Madre de Dios River in Peru, then becomes the Beni
River in Bolivia before it meets its confluence with the

Amazon River. The Brazos River in Texas flows 1485
km from its origin near the Texas–New Mexico border

to the Gulf of Mexico.
In all four rivers, we conducted fieldwork during the

low-water period (defined as the annual dry season in
South America and the summer in North America),

because more fishes inhabit habitats in the littoral zone
and they can be captured more efficiently under these

conditions. As water levels descend in rivers and
floodplains, aquatic habitat is reduced, fish densities
increase, and most biotic interactions intensify (Lowe-

McConnell 1987, Winemiller and Jepsen 1998). Survey
methods were standardized to produce comparable
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samples of perciform fish assemblages from the same

habitats across the four regions. We sampled fishes from

a stretch of the river channel (;20 km) and nearby

floodplain lakes. In the Cinaruco River, where flood-

plain lakes were common, we collected cichlids along the

shoreline of seven lakes, whereas in the Tambopata, a

single large lake was present in the survey region (Lake

Tres Chimbadas). In the Brazos River, we sampled two

oxbow lakes (Big Bend and Moehlman’s Slough; Zeug

et al. 2005), and the main river channel ;10 km

upstream and 10 km downstream from state Highway

21. Finally, we surveyed the river channel and two

floodplain lakes along the Neches River between the

towns Evadale and Spurger. Habitats were categorized

as macrohabitats (river channel, floodplain lakes) and

mesohabitats. Within the two macrohabitats, four

mesohabitats were surveyed: sand bank (.95% sand

substrate), leaf litter (.90% covered by leaves), rock

shoal (.90% covered by rocks), and submerged wood

(.95% submerged wood) (see Montaña and Winemiller

[2010] for further details).

In the Cinaruco River, we conducted surveys between

December of 2005 and May of 2006. We surveyed the

Tambopata River during June and July of 2009. Surveys

in the Texas rivers were conducted during three summers

(May to August, 2009–2011). As a result of the diversity

of mesohabitat types in each of the rivers and the

logistical difficulties of using certain techniques in the

tropical rivers, multiple survey methods were required.

Seining was conducted in the Cinaruco, Tambopata,

Neches, and Brazos Rivers within mesohabitats classi-

fied as sand bank or leaf litter (seine dimensions: 6.4 3

1.8 m, 4-mm mesh). At each survey site (mesohabitat

patch), one sample consisted of three hauls that were not

overlapping in the area covered (following method of

Layman and Winemiller 2004). Seine hauls were

initiated from a depth that ranged between 1.0 m to

1.5 m and terminated along the shoreline. In the

Cinaruco and Lake Tres Chimbadas (Tambopata),

small baited hooks (number 8) were used to capture

fish from rock shoals and submerged wood patches

where seining was ineffective. A cast net (2 m diameter,

1-cm mesh) also was used in leaf litter and wood

substrata in Lake Tres Chimbadas to assess if any

additional species were present. Electrofishing (pulsed

direct current [DC] from a hand-held boat unit) was

conducted in the two Texas rivers within rock or wood

patches. Each rock shoal or submerged wood patch was

considered sufficiently sampled when no additional

perciform species were obtained following 30 min of

sustained effort using hooks or 10 min of electrofishing.

We assumed that seining effectively captured all cichlid

and centrarchid species in sand bank and leaf litter

mesohabitats. We assumed that baited hooks did not

effectively capture dwarf cichlids (e.g., Apistogramma,

Biotoecus, Crenicichla aff. wallacii ) if they were present

in rock shoal or submerged wood patches. Based on

comparisons with prior field studies at these sites that

used the same plus alternative methods to survey fishes

in these mesohabitats of the same rivers (Zeug et al.

2005, Arrington and Winemiller 2006, Layman et al.

2010), our survey methods and degrees of effort yielded

reliable estimates of presence or absence of perciform

species within mesohabitat patches. The two exceptions

were Crenicichla aff. wallacii in the Cinaruco, a dwarf

cichlid we did not capture from rock and submerged

wood patches using hooks, but which was present in 15–

40% of artificial ceramic brick and woody debris patches

sampled with a net in earlier studies (Arrington et al.

2005, Layman et al. 2010), and Apistogramma sp., a

dwarf cichlid not captured from submerged wood by us,

but present in 20–40% of artificial wood patches in the

earlier studies. In the tropical rivers, 282 mesohabitat

samples (669 total seine hauls, 340.8 hours of fishing

with baited hook, and 130 cast net throws) yielded 8705

individual cichlids. In the temperate rivers, 241 meso-

habitat samples (516 total seine hauls, 7177 times/second

[pulse periods of electrofishing) yielded 9675 individual

centrarchids. Captured specimens were preserved in a

15% formalin solution in the field and transported to the

laboratory where they were examined and measured.

Voucher specimens were archived in the Museo de

Ciencias Naturales at UNELLEZ Guanare, Venezuela,

and the Biodiversity Research and Teaching Collections

at Texas A&MUniversity, College Station, Texas, USA.

Morphological traits

For all species collected (26 species of cichlids and 12

species of centrarchids; Appendix A), we recorded 23

morphological characters (Appendix B) in five adult

specimens per species. Traditional morphometric mea-

surements were made using calipers (to nearest 0.01

mm). We chose measurements to reflect various facets of

trophic ecology, swimming behavior, and habitat use

(Gatz 1979, Winemiller 1991, Montaña and Winemiller

2010). Twenty-one measurements were converted to

proportions of standard length, body depth, body width,

or head length following Winemiller (1991), so that

descriptors of body and fin shape could be analyzed

without the influence of body size. Ratios of body size

can introduce allometric bias into shape analysis, but

allometric influences should be negligible for interspe-

cific comparisons in which a restricted adult size class is

chosen to represent a given species. In our data set,

interspecific morphological variation greatly exceeded

intraspecific variation, including ontogenetic variation;

therefore, bias from failure to account for intraspecific

variation (Violle et al. 2012) is not expected to

significantly influence overall community patterns. We

performed preliminary analysis using three different

techniques to remove the effect of body size from

components of shape: ratios or proportional standard-

ization based on standard length (SL; Gatz 1979),

sheared principal components analysis (PCA; Bookstein

et al. 1985), and residuals from analysis of covariance

(McCoy et al. 2006), and results from these methods
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yielded patterns that essentially were the same. There-

fore, we used standardized values of selected ratios as
descriptors of shape that have straightforward ecolog-
ical and functional interpretations (Winemiller 1991).

Data analysis

Analysis of morphospace.—To describe the morpho-

logical space occupied by each species assemblage and
examine among-species differences in functional traits,
we first performed a principal components analysis

(PCA) based on the correlation matrix of all species and
traits. We eliminated Centrarchus macropterus from the
Neches River data set, because only one individual was

captured during our surveys. All other species from all
four rivers (Appendix C) yielded at least 10 individuals
during surveys. Morphological data for 130 specimens

of cichlids from the Cinaruco and Tambopata Rivers
and 120 specimens of centrarchids from the Neches and
Brazos Rivers were log-transformed prior to the

analyses to enhance the interpretation of the axes and
fulfill assumptions of this multivariate approach. Be-

cause the measurements of morphological traits made
on five adult specimens of a given species were highly
consistent, we calculated species means for the 23

morphological attributes. These means were then used
for PCA to ordinate species in morphospace. Species
loadings on the first four PC axes provided the basis for

inter-assemblage comparisons of species distributions in
morphological space. The first four PC gradients
explained 68.8% of total morphological variation

(Appendix B). We used a multivariate MANOVA to
test for significant differences among morphospaces
occupied by the four regional perciform assemblages as

defined by PCA. In addition, a Mantel test was
conducted to derive correlations between the matrix of
species trait values and matrices of species occurrence in

mesohabitat categories. PCA, MANOVA, and Mantel
test analyses were performed with PAST.exe (Hammer
et al. 2001).

Morphological dissimilarity for every possible species
pairing within each regional assemblage was estimated

by calculating Euclidean distance using PC scores. To
adjust for the different amounts of variation modeled by
each axis, we calculated species morphological similarity

using weighted Euclidean distance. This method allows
more dimensions (gradients) of morphological variation
to be included when estimating species similarity for

calculation of assemblage morphospace metrics, without
biasing the analysis by treating all gradients as having
equal influence. The contribution of each PC axis to the

Euclidean distance was weighted using the proportion of
variance explained by the axis as the weighting factor
(w). Euclidean distance between species pairs was

computed according to the following formula:

dðj;kÞ ¼ Rnwi xij � xik

� �� �1=2

where n was the number of attributes i (PC axes), xij and

xik were standardized values of the same attribute (PC

axis scores) for species j and k, and wi was a weight

attached to attribute i.

From the pairwise Euclidean distance values, we

determined morphological measures of mean nearest-

neighbor distance (NND), an index of species packing in

morphological space, the standard deviation (SD) of

NND, an index of evenness of species dispersion or

packing in morphological space, and the average

distance to the assemblage centroid (CD), an index that

provides an estimate of the relative size of the

morphological hypervolume or total niche space occu-

pied by an assemblage (Gatz 1979, Winemiller 1991).

Lower values of the SD of NND indicate that species are

more evenly dispersed within morphospace, a pattern

that would be consistent with limiting similarity. We

performed linear regressions using SPSS 16.0 for

Windows (SPSS 2007) to test the relationship between

species richness and mean NND, as well as the SD of

NND and mean CD. We compiled sub-matrices

containing species from individual mesohabitat patches

for each river, and then aggregated mesohabitat patch

samples to form matrices for mesohabitat categories for

each river.

Morphological null model.—To test the hypothesis

that assemblage morphological structure differs from

random expectations when viewed at different spatial

scales, we developed a computer program (Sampler

version 1.0; see the Supplement) that generates random

species assemblages drawn from the observed species

pool and calculates the nearest-neighbor distances

(NND) and centroid distances (CD). The input to the

program was an n-by-four matrix consisting of the first

four PCA axes for each species in an n-species

assemblage. The proportion of the variance modeled

by each PCA axis was used as input to compute

weighted Euclidean distances. For each species assem-

blage, the program repeatedly generated random sam-

ples of k rows (simulated local assemblages) from the n

rows, representing the species in the assemblage regional

pool, and computed the NND and CD for the k rows.

For smaller assemblages, such as the Brazos (11 species)

and Tambopata (7 species), the program generated all

possible combinations (samples) of k rows from the

original n. For large assemblages such as in Cinaruco (n

¼ 19 species), the program generated 1000 random

samples of size k. Random assembly of null assemblages

implies that all species in the regional pool are

ecologically equivalent and have the same probability

of colonizing a habitat patch (Hubbell 2001). To

generate the random assemblages, species were selected

without replacement in the regional species pool. For

each mesohabitat category, null assemblages containing

the same number of species observed for individual

mesohabitat patches within each river were generated.

The null model assumes that all species from the rivers

macrohabitat species pools have equal probability to

colonize a mesohabitat patch within that macrohabitat,

which seems reasonable given the high abundance and
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dispersal capabilities of all cichlid and centrarchid

species in the macrohabitats (again, C. macropterus,
the only rare species, was eliminated from the Neches

data set).
Observed values for mean NND, SD of NND, and

mean CD of natural assemblages were compared to
values for randomly generated sets of species having the

same number of species as the real assemblage. We used
Fisher’s chi-square summation test of combined prob-
abilities [v2 ¼�2 Rlog (Pi )] to test whether morpholog-

ical patterns from each mesohabitat type were
significantly different from those drawn randomly from

the set of species pools. Fisher’s summation test (Sokal
and Rohlf 1995) combines probabilities (Pi ) from all

samples within a set of related comparison to determine
if the overall difference between observed vs. random

values is statistically significant. Relationships of the
three assemblage dispersion metrics with species richness

were examined using standard linear regression with
SPSS 16.0 (SPSS 2007). We also performed analysis of

covariance (ANCOVA) using SPSS 16.0 (SPSS 2007) to
test for differences in regression slopes and intercepts of

observed and randomly generated data sets. The
homogeneity of regression (slope) assumption was tested

to evaluate interactions between the covariate (i.e.,
species richness), independent variable (mean NND, SD
of NND, and mean CD), and dependent variable

(observed vs. random).

RESULTS

Regional and local species richness

The Cinaruco River had 19 cichlid species, the Neches

River had 12 centrarchid species, the Brazos River had
10 centrarchids, and the Tambopata River had 7

cichlids. Surveys in the turbid channel of the Tambopata
River did not yield any cichlids; all specimens were

collected from Tres Chimbadas, a connected floodplain
lake. Ten centrarchids were common to the Neches and

Brazos, and Centrarchus macropterus (rare and therefore
eliminated from analyses) and Pomoxis nigromaculatus
(common) were only present in the Neches. Species

richness of cichlids and centrarchids tended to be higher
in floodplain lakes than the corresponding river channel

(Appendix C). In the Cinaruco, most cichlid species
were captured in both the river channel and floodplain

lakes, with only two species restricted to specific
macrohabitats; Cichla intermedia was restricted to the

river channel, and Satanoperca mapiritensis was cap-
tured only from floodplain lakes.

Ecomorphological gradients

Species of both families were strongly differentiated
on the basis of head and body shape, mouth width and

position, and fin dimensions. PCA resulted in four axes
(PC1–4) explaining 68.8% of the total variation in
species morphology (Appendix B). PC1 described a

gradient that reflected differences in morphological
traits associated with locomotion, such as body size

and shape, and fin dimensions. Species with positive

scores on PC1 had relatively deep and laterally

compressed bodies and short snouts (e.g., sunfishes

and heroine and cichlasomatine cichlids). Negative

values on PC1 were associated with large mouths and

large dorsal and anal fins, features possessed by Cichla

spp. and Crenicichla lugubris (Cichlidae), as well as

Micropterus spp. and Pomoxis spp. (Centrarchidae).

PC2 was strongly influenced by traits directly involved

with feeding such as head height, eye diameter, eye

position, and snout length. Species with large positive

scores on PC2 had relatively long and dorso-ventrally

compressed heads (e.g., Crenicichla spp.), short snouts,

and terminally to superiorly positioned mouths (e.g.,

Apistogramma spp. and Biotoecus). High negative scores

on PC2 were associated with relatively large eyes and

narrow heads (e.g., Lepomis and Pomoxis spp.). PC3

and PC4 accounted for 17.2% of morphological

variation. PC3 was mostly associated with body shape,

fin dimensions, and other traits that directly affect

locomotion; species with high positive scores on PC3

had laterally compressed bodies, long dorsal fins, and

short snouts (e.g., Lepomis spp. and heroine and

cichlasomatine cichlids). PC4 described a gradient of

traits associated with feeding; species with relatively short

heads, long snouts, and highly protrusible jaws (e.g.,

geophagine cichlids) had high positive scores on PC4.

MANOVA performed on the assemblage PCA

coordinates for the four rivers indicated that regional

species assemblages occupied significantly different

areas within the total perciform morphospace (Wilks’s

k ¼ 0.004, F ¼ 4.46, P , 0.0001). The Mantel test

revealed a significant correlation between ecomorpho-

logical structure of local species assemblages and

mesohabitat categories (r¼ 0.10, P ¼ 0.04).

Ecomorphological dispersion within perciform

assemblages

Interregional comparisons.—Results from compari-

sons of observed data with randomized data from the

null model indicated nonrandom distributions within

ecomorphological space of perciform assemblages for

each of the four rivers when data for all mesohabitat

types were combined (Fig. 2). Most observed data were

above the upper 95% confidence interval for random

data, and Fisher’s summation v2 analysis yielded

statistically significant differences for nearly all compar-

isons (Table 1). Assemblages of all four rivers had mean

nearest-neighbor distances (NND) that were significant-

ly greater than predicted at random. The mean distance

to the assemblage centroid (CD) also was significantly

greater than the random prediction for each river. The

standard deviation of NND was significantly greater

than the random prediction for every river except the

Tambopata (P ¼ 0.06), which indicates that species

dispersion within assemblage ecomorphological space

was less even than expected by chance in those three

rivers.
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Comparisons among mesohabitats within rivers.—

Mean NND of most assemblages plotted above the

upper 95% confidence interval for the distribution of

means from null assemblages drawn at random from the

corresponding regional species pool (Fig. 3). Results

from Fisher’s summation v2 indicated that all but one of

20 mesohabitats had assemblages with mean NND

values significantly greater than means derived from null

FIG. 2. Values of three morphological dispersion indices (mean and standard deviation [SD] of nearest-neighbor distance
[NND], and mean distance to centroid [CD]) for perciform assemblages in mesohabitats of four floodplain rivers: the Cinaruco and
the Tambopata in South America (Peru) and the Neches and the Brazos in North America (USA). Distances between species in the
morphospace were plotted as a function of the number of species for every river. Open circles represent observed data, solid lines
represent the mean of observed data, dashed lines represent the mean of the randomly generated assemblages, and gray solid lines
represent 95% confidence intervals for random assemblages.

* Differences in the means (results from chi-square, v2) of observed samples were significantly greater (P , 0.05) than random
expectation.

� Regression slopes (results from ANCOVA) of observed samples were significantly greater (P , 0.05) than random expectation.

TABLE 1. Results of Fisher’s summation v2 for differences in indices of ecomorphological dispersion between observed vs.
randomly generated perciform fish assemblages from four rivers (nearest-neighbor distance, NND; distance to centroid, CD).

River

Mean NND Mean CD SD of NND

v2 P, obs/ran Regression slope P v2 P, obs/ran Regression slope P v2 P, obs/ran Regression slope P

Cinaruco 0.001 0.02 0.001 0.04 0.001 0.07
Neches 0.008 0.07 0.001 0.01 0.002 0.01
Brazos 0.001 0.34 0.002 0.005 0.02 0.06
Tambopata 0.002 0.02 0.001 0.03 0.06 0.17

Notes: ANCOVA was used to test for statistical significance of differences between regression slopes of observed vs. random
(obs/ran) assemblages for ecomorphological indices as a function of species richness. Data for local assemblages from diverse
mesohabitats in both channel and floodplain lake macrohabitats were pooled for each river. The Cinaruco and the Tambopata are
located in South America (Peru), and the Neches and the Brazos are found in North America (USA).
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model randomizations (Table 2), which means that

species were less similar within local assemblages than

expected by chance.

The mean distance to the assemblage centroid was

significantly greater than expected at random for all eight

mesohabitats of the Cinaruco, for wood patches of the

Tambopata floodplain lake, and for sand bank patches in

the channel of theNeches,butnot for anyof theBrazosand

the remainingmesohabitats in theNeches (Fig. 4, Table 2).

MeanCD values were smaller for centrarchid assemblages

(ranging from 0.33�0.41 in the Neches and 0.19–0.31 in

Brazos) when compared with cichlids (ranging from 0.42–

0.57 in the Cinaruco).

FIG. 3. Observed and simulated mean nearest-neighbor distance (NND) in perciform assemblages (river, macrohabitat, and
mesohabitat) inhabiting local mesohabitats in four floodplain rivers. Abbreviations for the rivers are: C, Cinaruco; N, Neches; B,
Brazos; and T, Tambopata. Abbreviations for the macrohabitats are: L, floodplain lake; and Ch, river channel. Distances between
species in the morphospace were plotted as a function of number of species for every mesohabitat type. Open circles represent
observed data, solid lines represent the mean of observed data, dashed lines represent the mean of the randomly generated
assemblages, and gray solid lines represent 95% confidence intervals for random assemblages.
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Evenness of species dispersion in morphospace varied

according to habitat type. In the Cinaruco, six of eight

mesohabitats had assemblages less evenly dispersed

within morphospace than expected at random (i.e.,

observed SD of NND was significantly greater than

expected at random; Table 2). In the two temperate

rivers, only 1 of 10 mesohabitats (Neches channel rock

shoals) revealed dispersion of species within morpho-

space that was less even than expected at random (Fig.

5, Table 2). Species dispersion within assemblage

morphospace in the two mesohabitats of the Tambopata

was not significantly different than predicted at random

(Table 2).

Ecomorphological similarity in relation to local

species richness

Interregional comparisons.—Linear regressions were

calculated for each of the morphological dispersion

metrics in relation to local assemblage richness (species

coexisting within a mesohabitat), and slopes for

observed vs. randomized data were compared (Fig. 2,

Table 1; Appendix D). For mean NND, the Cinaruco

and Tambopata had negative slopes that were signifi-

cantly steeper than expect at random, the Neches and

Brazos had negative slopes, but not significantly

different from random. For mean CD, regression slopes

for all four rivers were significant greater than expected

at random. Slopes for the Brazos and Neches were more

negative than those of the two tropical rivers. The

regression slope for SD of NND for the Neches was the

only one that was significantly different (greater) than

expected at random.

Comparisons among mesohabitats within rivers.—

Regression slopes for mean NND in relation to species

richness within mesohabitats of floodplain lakes were

low and negative with the exception of the Tambopata

(Fig. 3; Appendix E). Mesohabitats in the river channel

of the Cinaruco, Neches, and Brazos Rivers showed a

general pattern of lower morphological similarity with

increasing species richness of local assemblages within

patches (Fig. 3), but this relationship was only

statistically significant for leaf litter and rock shoal

mesohabitats in floodplain lakes of the Cinaruco, and

submerged wood and rock shoal mesohabitats in the

channel of the Neches (Appendix E). Slopes of

regressions for observed data were not significantly

lower than slopes from random data in 8 of 20 cases

(Table 2).

Regression slopes of mean CD were low and positive

for cichlid assemblages in mesohabitats of the Cinaruco

River (Fig. 4; Appendix E), but low and negative for

assemblages in mesohabitats of the Tambopata flood-

plain lake and for centrarchids in most mesohabitats of

the two temperate rivers. Among the 20 cases in which

TABLE 2. Results of Fisher’s summation v2 for combined probabilities for significance of differences between ecomorphological
indices for observed vs. randomly generated samples from each of 20 perciform assemblages surveyed in mesohabitats of tropical
and temperate floodplain rivers.

River and
macrohabitat

Mesohabitat
category

Mean NND Mean CD SD of NND

v2 P, obs/ran
Regression
slope P v2 P, obs/ran

Regression
slope P v2 P, obs/ran

Regression
slope P

Cinaruco

Floodplain lake wood ,0.001 0.33 ,0.001 0.19 0.10 0.15
Floodplain lake rocks ,0.001 0.009 ,0.001 0.22 0.10 0.03
Floodplain lake leaf litter ,0.001 0.02 0.05 0.98 0.02 0.14
Floodplain lake sand bank ,0.001 0.001 0.01 0.19 0.05 0.04
Channel wood ,0.001 0.17 ,0.001 0.42 0.01 0.62
Channel rocks ,0.001 0.02 ,0.001 0.02 0.001 0.01
Channel leaf litter ,0.001 0.04 0.01 0.66 0.01 0.28
Channel sand bank ,0.001 0.58 0.01 0.78 0.02 0.26

Neches

Floodplain lake wood ,0.001 0.88 0.50 0.77 0.90 0.73
Channel rocks ,0.001 0.11 0.10 0.12 0.01 0.09
Floodplain lake leaf litter ,0.001 0.12 0.90 0.69 0.90 0.53
Channel sand bank 0.99 0.05 ,0.001 0.07 0.90 0.84
Channel wood 0.05 0.03 0.90 0.24 0.90 0.02

Brazos

Channel rocks ,0.001 0.001 0.97 0.88 0.50 0.04
Floodplain lake leaf litter ,0.001 0.001 0.97 0.29 0.97 0.03
Channel sand bank ,0.001 0.001 0.50 0.21 0.90 0.59
Channel wood ,0.001 0.03 0.97 0.53 0.50 0.21
Floodplain lake wood ,0.001 0.001 0.97 0.73 0.90 0.01

Tambopata

Floodplain lake leaf litter ,0.001 0.68 0.50 0.66 0.90 0.52
Floodplain lake wood ,0.001 0.61 ,0.001 0.51 0.90 0.69

Note: ANCOVA tested for statistical significance of differences between regression slopes of observed vs. random assemblages
for ecomorphological indices as a function of species richness.

February 2014 99FISH COMMUNITY ASSEMBLY IN RIVERS



the observed regression slope was compared with the

regression slope based on random data, only one

(Cinaruco channel rock shoal) was significantly different

(Table 2).

The general trend was for the SD of NND to remain

relatively constant or decline in relation to higher species

richness (Table 2), but the regression was statistically

significant only for rock shoal habitats in floodplain

lakes of the Cinaruco and submerged wood in the

channel of the Neches (Appendix E). Regression slopes

for observed data were significantly different than

regression slopes for random data in 7 of 20 cases, and

each of these had more negative slopes than the

regression from random data (Table 2; Appendix E).

This indicates that species within local assemblages in

these mesohabitats were more evenly dispersed within

morphospace than expected at random. Three of these

mesohabitats were in the Cinaruco River, two were in

the Neches River, and two were in the Brazos River.

FIG. 4. Observed and simulated mean distance to centroid in perciform assemblages inhabiting local mesohabitats in floodplain
lakes and river channels of the Cinaruco, Tambopata, Neches, and Brazos rivers. See Fig. 3 for clarification of the assemblages.
Open circles represent observed data, solid lines represent the mean of observed data, dashed lines represent the mean of the
randomly generated assemblages, and gray solid lines represent 95% confidence intervals for random assemblages.
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DISCUSSION

Environmental filtering or limiting similarity?

Among-region comparisons

Both cichlids and centrarchids are common in

floodplain lakes and low-velocity habitats within river

channels, and they frequently are associated with

structurally complex mesohabitats. These two perciform

lineages have species that are convergent in many

aspects of functional morphology and trophic ecology

(Montaña and Winemiller 2013). The distribution of

functional traits in these assemblages should reflect

modes of maneuvering and feeding within similar

habitats. Given findings from an earlier study that

found a strong inverse relationship between latitude and

the morphospace occupied by river fish assemblages

from similar macrohabitats (Winemiller 1991), we

expected to see greater centroid distances among

FIG. 5. Observed and simulated standard deviation of nearest-neighbor distance in perciform assemblages inhabiting local
mesohabitats in the Cinaruco, Tambopata, Neches, and Brazos Rivers. See Fig. 3 for clarification of the assemblages. Open circles
represent observed data, solid lines represent the mean of observed data, dashed lines represent the mean of the randomly generated
assemblages, and gray solid lines represent 95% confidence intervals for random assemblages.
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tropical cichlid assemblages than temperate centrarchid

assemblages when the same mesohabitats of lowland

rivers were compared. The morphospace (average CD)

was larger for species-rich cichlid assemblages of the

Cinaruco River in Venezuela, but the species-poor

cichlid assemblages of the Tambopata floodplain lake

in Peru did not have larger morphospaces than

centrarchid assemblages. Certain ecomorphotypes

among the Neotropical cichlids, such as elongate

piscivores (Crenicichla spp.) and dwarf invertivores

(Apistogramma and Biotoecus spp.), were absent from

the centrarchid assemblages. If we can assume that our

morphological traits determine performance, then mor-

phological space serves as a proxy for niche space, and

species-rich cichlid assemblages are more ecologically

diverse than temperate centrarchid assemblages, as well

as cichlid assemblages in regions with low diversity.

In addition to revealing differences in evolutionary

niche diversification, interregional comparisons of as-

semblage functional traits also reflect the influence of

environmental filtering. For example, the absence of

molluscivorous cichlids in the Cinaruco and Tambopata

Rivers is explained by the absence of mollusks, which, in

turn, is explained by low water hardness in these rivers

(Montaña and Winemiller 2013). The apparent absence

of cichlids in the Tambopata River channel can be

explained by high concentrations of suspended sedi-

ments that made the water turbid, which impairs

visually mediated activities that are important for

cichlids (Lowe-McConnell 1987). Similarly, centrarchid

species richness and abundance was higher in littoral

habitats of the Neches River channel than the same

types of habitat of the Brazos River, suggesting that the

high turbidity of the Brazos negatively affects these

fishes (Gardner 1981).

Substrate composition and heterogeneity also influenc-

es the use of space by species of both groups. For

example, dwarf cichlids, including Apistogramma spp.

and Crenicichla aff. wallacii, were most common in leaf

litter mesohabitats. Geophagine cichlids that winnow

small benthic invertebrates and substrate particles within

their oropharyngeal chamber (Geophagus spp. and

Satanoperca spp.) were more common on sandbanks.

Piscivorous cichlids (Cichla spp., Crenicichla lugubris)

tended to be associated with mesohabitats containing

large structures, such as thick branches or rocks. Jepsen et

al. (1997) found that three Cichla species in the Cinaruco

River subdivided habitat and food resources in a manner

that indicated niche complementarity.

Centrarchids also were segregated in space according

substrate types and water depth.Many sunfishes (Lepomis

spp.) were captured in shallow areas with submerged leaf

litter or submerged wood, whereas larger piscivores, such

asMicropterus andPomoxis spp., usuallyoccupied areasof

the river channel that contained structures with less density

and complexity (e.g., tree trunks, large rocks) or lacked

structure (sand banks). Habitat segregation by centrarch-

ids in lentic systems has been shown to be associated with

resource availability (Werner 1977,Werner andHall 1977)

and size-dependent threat of predation (Hall and Werner

1977). Thus, even though limiting similarity (niche

complementarity) was strongly supported by our analysis

at the patch scale (discussed below in Trait dispersion in

relation to species richness at the patch scale: Species

packing or assemblage niche expansion?), findings at

broader scales are consistent with the idea that fish

functional traits are associated with habitat features that

influence not only foraging success but survival (Wine-

miller et al. 1995, Wood and Bain 1995, Willis et al. 2005,

Carlson and Wainright 2010, Montaña and Winemiller

2010). Evenness of species dispersion within assemblage

morphospace was not different among the four regions, so

this metric provided no insight about factors structuring

assemblages at broad scales.

Comparisons among mesohabitat types

within macrohabitats and regions

When perciform assemblages were analyzed according

to mesohabitat patches of various types within a given

macrohabitat, species were significantly overdispersed in

all 20 cases (Table 3), which supports the limiting similarity

model. Overdispersion of coexisting species based on

functional traits is evidence that species interactions,

competition in particular, influence community assembly

(Weiher et al. 1998). The size of themorphospace of cichlid

assemblages on patches was greater than expected at

random for all eight mesohabitat types examined in the

Cinaruco River, and one (submerged wood) of two

mesohabitat types that were examined in the Tambopata

floodplain lake. In contrast, the morphospace of cen-

trarchid assemblages was not significantly greater than

expected at randomfor 9of 10mesohabitat types examined

in the two temperate rivers (Table 3). Thus, overdispersion

of cichlids within morphospace at the patch scale was

accomplished, in part, by expansion of assemblage

morphospace (addition of more divergent morphologies).

Centrarchid assemblages at the patch scale were signifi-

cantly overdispersed, but without having a total assem-

blage morphospace significantly greater than expected by

chance. None of the 20 cases revealed species dispersion

patterns that were significantly more or less even than

expected at random (Table 3); therefore, the evenness

metric was not informative.

Body size and shape variation have long been

considered to play an important role in niche partition-

ing (Brown and Wilson 1956, Hutchinson 1959). In our

study, body size and features of the mouth accounted for

much of the interspecific morphological variation in

cichlids and centrarchids, suggesting that trophic niche

differentiation plays a role in species coexistence

(Werner 1977, Werner and Hall 1977, Mittelbach

1984, Winemiller et al. 1995, Jepsen et al. 1997,

Montaña and Winemiller 2009). If competition indeed

shapes the structure of local species assemblages during

low-water periods, morphological differences among

coexisting species that reflect niche partitioning (niche
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complementarity) would be expected (Ricklefs and

Miles 1994). For example, Cichla and Crenicichla

species, piscivores that co-occur in many habitats in

the Cinaruco River, plot within the same region of

cichlid morphospace, but Crencichla have more elongate

bodies, and Cichla have larger mouth gapes and body

sizes. Competition among these piscivores likely inten-

sifies during the latter stages of the annual low-water

period when densities of prey fishes are greatly reduced

by predation mortality (Montaña et al. 2011). Among

centrarchids, Micropterus salmoides, Lepomis cyanellus,

and L. macrochirus coexist in diverse habitats through-

out much of North America. These species differ in

morphology and body size, and dietary segregation

occurs largely on the basis of prey size (Werner 1977,

Werner and Hall 1977). Micropterus salmoides is more

piscivorous than the two sunfishes, L. macrochirus

consumes mostly small aquatic invertebrates, but

occasionally small fishes, and L. cyanellus is a generalist

that consumes both invertebrates and fishes at sizes

smaller than those consumed by Micropterus and larger

than those consumed by L. macrochirus (Werner 1977,

Montaña and Winemiller 2013).

Trait dispersion in relation to species richness at the patch

scale: Species packing or assemblage niche expansion?

Several mechanisms could allow a given habitat patch

to support more species. If population densities are

reduced by predation or disturbance, the ratio of resource

demand/supply could be sufficiently low such that

competition is no longer a limiting factor for species

coexistence. In this case, the total assemblage morpho-

space might be constant with species more crowded

(underdispersed) within it (Fig. 1). On the other hand, if

resource demand/supply is high enough to cause compe-

tition, the available niche space may be subdivided as new

species are added (Pianka 1974). In this case, higher

species richness might be associated with a constant

assemblage morphospace and a more even dispersion of

species within it. Alternatively, species that can exploit

different kinds of resources, or the same resources but in

novel ways, may be added to the habitat, and this case,

the assemblage morphospace (niche space) would expand

while species similarity remains unchanged (Fig. 1;

Ricklefs and Travis 1980, Winemiller 1991).

When regression slopes of morphological indices vs.

assemblage species richness were compared between real

and random assemblages of mesohabitat types within

macrohabitats, only one case among 20 revealed signif-

icant assemblage morphospace expansion (Table 4). Five

cases revealed greater packing of species within assem-

blage mophospace than predicted at random as species

richness increased, and seven cases revealed less species

packing than predicted at random (Table 4). Thus, our

findings at the scale of the local habitat patch are not

consistent with those from analyses of morphology in

TABLE 3. Summary of nonrandom ecomorphological patterns of perciform assemblages within mesohabitats and macrohabitats
of four rivers from temperate and tropical regions.

River and macrohabitat
Mesohabitat
category

Nearest-neighbor distance Size of morphospace

Greater evennessPacked Overdispersed No difference Expansion

Cinaruco

Floodplain lake wood = =
Floodplain lake leaf litter = =
Floodplain lake rocks = =
Floodplain lake sand bank = =
Channel wood = =
Channel leaf litter = =
Channel rocks = =
Channel sand bank = =

Tambopata

Floodplain lake leaf litter = =
Floodplain lake wood = =

Neches

Floodplain lake wood = =
Channel rocks = =
Floodplain lake leaf litter = =
Channel sand bank = =
Channel wood = =

Brazos

Channel rocks = =
Floodplain lake leaf litter = =
Channel sand bank = =
Channel wood = =
Floodplain lake wood = =

Number of cases 0 20 11 9 0

Note: A check mark (=) indicates support for the pattern.
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freshwater fish (Winemiller 1991) and bird communities

(Ricklefs and Travis 1980, Travis and Ricklefs 1983)

made at much larger spatial scales (e.g., stream reaches,

forests, islands) in which species tended to join the

periphery of morphological space as species richness

increased and species morphological similarity remained

relatively constant. It is important to note that these

earlier studies conducted at broader spatial scales also

compared patterns among more diverse taxa, and they

did not use null models to determine whether or not the

trends were significantly different from trends expected at

random. In 8 of 20 cases, more species-rich cichlid and

centrarchid assemblages had greater evenness of species

dispersion within assemblage morphospace (Table 3), a

pattern suggesting that species interactions play a role.

One reason why significant trends in relation to species

richness were not observed at the patch scale is that these

local species assemblages were influenced by biotic

interactions, irrespective of species richness in the local

patch. In other words, mesohabitat patches could have

been supporting the maximum possible number of

cichlids and centrarchids during the low-water period

when fish densities are highest. A high degree of

mesohabitat patch saturation would be inferred from

the significant overdispersion that was found in every case

(Tables 1–3). It would be informative to repeat this study

at the same sites when water levels are sustained at high

levels. We predict that local assemblages may be more

randomly assembled, or responsive to environmental

filtering under high-water conditions of expanded aquatic

habitat and reduced per-unit-area fish densities. Arring-

ton et al. (2005) determined that fish assemblages in

littoral zones of the Cinaruco River are more strongly

structured during the low-water period and less struc-

tured during the periods of rising and falling water levels.

Other studies in the tropics have shown that seasonal

hydrology (Cox Fernandes 1999) and diel periodicity

(Arrington and Winemiller 2003) can influence fish

assemblage structure at the local scale.

Conclusions

Adaptive diversification over evolutionary time and

environmental filtering in the short term both appear to

influence the structure of perciform assemblages in rivers

when comparisons are across regional scales. For

example, Alfermann and Miranda (2013) found that

land cover, water depth, and primary productivity

influenced centrarchid assemblages of 53 lakes in

TABLE 4. Summary of support for alternative ecomorphological patterns in relation to species richness of perciform assemblages
within mesohabitat patches in tropical and temperate rivers.

River and macrohabitat
Mesohabitat
category

Nearest-neighbor distance Size of morphospace

Greater evennessPacked Overdispersed No difference Expansion

Cinaruco

Floodplain lake wood =
Floodplain lake leaf litter = =
Floodplain lake rocks = = =
Floodplain lake sand bank = = =
Channel wood =
Channel leaf litter = =
Channel rocks = = =
Channel sand bank =

Tambopata

Floodplain lake leaf litter =
Floodplain lake wood =

Neches

Floodplain lake wood =
Channel rocks = = =
Floodplain lake leaf litter =
Channel sand bank = = =
Channel wood = =

Brazos

Channel rocks = = =
Floodplain lake leaf litter = =
Channel sand bank = =
Channel wood = =
Floodplain lake wood = = =

Number of cases 5 7 19 1 8

Notes: When the regression for mean nearest-neighbor distance (NND) had a statistically lower slope than expected at random,
species packing with high niche overlap is supported (average similarity increases with species richness); if the regression slope has a
significantly higher slope than expected at random, then limiting similarity is supported. When the regression slope of mean
distance to the assemblage centroid (CD) was significantly higher than expected at random, greater species richness was associated
with expansion of assemblage morphospace. Increased evenness of species dispersion within ecomorphological space with
increasing species richness was supported by a negative trend in standard deviation of NND with a regression slope lower than
expected at random. A check mark (=) indicates support for the pattern.
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floodplains of the lower Mississippi River. Patterns of

morphological trait dispersion suggest that biotic

interactions are more influential in tropical cichlid

assemblages with high species richness than temperate

centrarchid assemblages. This conclusion is in general

agreement with findings from other studies of fish

assemblages in lowland rivers in tropical (Rodriguez

and Lewis 1997, Willis et al. 2005, Arrington and

Winemiller 2006) and temperate (Tonn et al. 1990,

Winemiller et al. 2000) regions. At the local scale of the

mesohabitat patch, strong patterns of species over-

dispersion within morphospace support the hypothesis

that biotic interactions influence community assembly

during low-water periods when fish densities are highest.

Our results contrast with those from recent morpholog-

ical analyses of estuarine fish assemblages that inferred a

dominant role for environmental filtering with little

evidence of limiting similarity at the local scale

(Mouchet et al. 2012). Morphological trends in relation

to species richness within mesohabitat patches were not

consistent, with some cases inferring greater species

packing in morphospace, some indicating less species

packing, and some indicating neither. This result,

together with the significant overdispersion of species

within assemblage morphospace observed overall at the

patch scale, suggests that mesohabitats in lowland rivers

tend to be saturated with these perciform fishes during

low-water phases of the hydrological cycle.
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SUPPLEMENTAL MATERIAL

Appendix A

Cichlid and centrarchid species used in this study (Ecological Archives M084-005-A1).

Appendix B

Morphological variable loadings for PC axes 1–4 from analysis of 19 cichlids from the Cinaruco River, 7 cichlids from the
Tambopata floodplain lake, 12 centrarchids from the Neches River, and 11 centrarchids from the Brazos River (Ecological Archives
M084-005-A2).

Appendix C

Ranges of species richness for perciform fish assemblages within mesohabitats in two macrohabitats of four floodplain rivers
(Ecological Archives M084-005-A3).

Appendix D

Slopes of regressions and coefficient of determination of observed and randomized data for three indices of morphological
dispersion in relation to number of species in local species assemblages across all mesohabitat types (Ecological Archives
M084-005-A4).

Appendix E

Simple linear regressions, coefficient of determination for observed and random data, slope values for observed and random
data, and P values resulting from t test analysis between observed and random analysis in the regression slopes of the three
measures of morphological dispersion of cichlids and centrarchids in relation to species richness (Ecological Archives
M084-005-A5).

Supplement

Sampler, a program for computing geometric properties of random samples (Ecological Archives M084-005-S1).
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