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ABSTRACT

Fish populations in the Brazos River, Texas, were surveyed monthly for 2 years to determine the relative influence of hydrology
and habitat characteristics on the recruitment dynamics of seven species representing three divergent life history strategies.
Surveys were conducted in two oxbow lakes with different flood recurrence intervals and the main river channel. The first year
was relatively dry with few oxbow-river connections, whereas year 2 was relatively wet and connections between the main
channel and floodplain habitats were common. Oxbow lakes supported greater juvenile abundances of most species relative to
the main channel and were particularly important for nest building species with parental care. The river channel supported small
species with extended reproductive periods and large, long-lived species that are able to store reproductive potential during
sub-optimal periods. Hydrologic isolation was associated with greater rotifer densities in oxbows, and species with the greatest
fecundity produced strong year classes during this period. Hydrologic connectivity did not increase juvenile production for most
species, suggesting that recruitment dynamics in the Brazos River are similar to predictions of the low flow recruitment
hypothesis (LFR). These results suggest that both hydrology and habitat heterogeneity interact with fish life history strategy to
determine optimal conditions for recruitment and all three factors must be considered in restoration strategies for floodplain
rivers. Copyright # 2007 John Wiley & Sons, Ltd.

key words: Brazos River; flood pulse; life history; oxbow; Texas

Received 19 March 2007; Accepted 25 July 2007

INTRODUCTION

Flood dynamics are predicted to be the primary environmental factor influencing fish recruitment in large rivers

(Sparks, 1995; Agostinho et al., 2004; Winemiller, 2005). The flood pulse concept (FPC; Junk et al., 1989) suggests

that annual floodplain inundation triggers blooms of primary and secondary production, and fishes in these systems

have reproductive ecologies adapted to exploit this pulse of production. In temperate zone rivers, flood pulses that

coincide with optimal temperatures have been associated with greater growth and survival of some species

(Gutreuter et al., 1999; Sommer et al., 2001; Schramm and Eggleton, 2006) and are predicted to increase fish

recruitment whereas the absence of a flood pulse or lack of synchronization between temperature and water rise

reduces recruitment success (Bayley, 1991; Halls and Welcomme, 2004). Despite widespread acceptance of the

FPC model, recent studies suggest that in rivers where flood dynamics do not follow the optimum described in the

FPC, fishes can recruit successfully during low flow periods (Humphries et al., 1999; Humphries et al., 2002; King

et al., 2003). Humphries et al. (1999) described this recruitment strategy as part of a low flow recruitment

hypothesis (LFR) proposed to explain fish population dynamics in rivers with less predictable flow regimes.

Habitat heterogeneity also has a significant impact on fish recruitment, and loss of certain habitat types due to

hydrologic modification and floodplain disconnection may be the primary cause of reduced recruitment in modified

rivers (Aarts et al., 2004). Fluvial dynamics create a mosaic of habitats within river-floodplain systems including

off-channel habitats such as oxbow lakes, sloughs and other slack water areas (Amoros and Bornette, 2002). These

habitats serve a variety of ecological functions including spawning and nursery areas and refuge from high flows in

the main channel (Sabo and Kelso, 1991; Humphries et al., 2006; Pease et al., 2006). Physicochemical attributes of

different habitat units have a strong influence on local species assemblages (Tejerina-Garro et al., 1998; Winemiller
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FLOODPLAIN FISH RECRUITMENT 91
et al., 2000; Suarez et al., 2004) and interactions between flood dynamics and habitat characteristics influence the

value of different habitats for spawning, feeding or refuge (Feyrer et al., 2006).

Attempts to elucidate optimal conditions for recruitment are complicated by the diversity of reproductive tactics

displayed by fishes in large rivers. Flow and habitat characteristics that benefit one strategy may be detrimental to

others (Sparks, 1995; Scheerer, 2002), and recruitment dynamics may not be synchronized among species with

divergent strategies (Welcomme et al., 2006). Because the performance of populations with particular suites of life

history traits has been associated with both hydrologic dynamics (Merigoux et al., 2001; Magalhaes et al., 2003;

Olden et al., 2006) and habitat characteristics (Persat et al., 1994; Townsend and Hildrew, 1994;Winemiller, 1996),

fish life history strategies provide a good framework for evaluating environmental influences on recruitment

dynamics.

Our goals for this study were to evaluate the relative influence of hydrology and habitat characteristics for

recruitment of species with divergent life history strategies, and to associate recruitment dynamics of each species

with environmental characteristics in each habitat and hydrologic period.We predicted that both conceptual models

of recruitment would apply to fishes in the Brazos River and that hydrologic and habitat characteristics that

maximize recruitment would be strongly associated with life history strategy.
METHODS

Study system

The Brazos River is a meandering low-gradient river that flows southeast >1400 km from the Texas–New

Mexico border to the Gulf of Mexico 2 km south of Freeport, Texas. The current study was conducted on the middle

Brazos River in east-central Texas. The middle Brazos is partially regulated by dams near the city of Waco, Texas;

however, flow dynamics are primarily driven by regional precipitation with contemporary fluvial dynamics

approximating historical conditions. Oxbow lakes are common on the Brazos floodplain and connections between

oxbows and the active river channel occur at irregular intervals in response to flow magnitude and oxbow

geomorphology. For additional study site details see Winemiller et al. (2000) and Zeug et al. (2005).

Two oxbow lakes with different connection frequencies and a 7 km reach of the Brazos River channel located

near the most upstream oxbow were surveyed monthly from June 2003 to May 2005. These oxbow lakes were

selected to represent typical low versus high connection frequencies. One oxbow (OXFREQ) connected frequently

at moderate levels of river discharge and the other oxbow (OXRARE) connected rarely at high levels of river

discharge. Flows required to connect oxbows with the river channel were determined by surveys conducted by the

Texas Water Development Board and calibrated to a United States Geological Survey (USGS) flow gauge located

near the Brazos River survey reach.

Biotic and abiotic characteristics

Environmental variables measured during each survey were selected based on predictions of conceptual models

of fish recruitment in floodplain rivers (FPC, LFR). Temperature and dissolved oxygen were measured using a YSI

85 meter. Maximum depth was recorded to the nearest 1 cm. Days of isolation were calculated using daily stream

flow data from USGS gauge and TWDB estimates of oxbow connection thresholds. Zooplankton were collected

using a 10 l Shindler trap with an 80mm mesh cod end. Organisms were identified as rotifers or microcrustaceans

(copepods and cladocerans) and densities were estimated from two 1ml sub-samples using a Sedgewick-Rafter

counting cell. Predator abundance was estimated as the combined gillnet catch-per-unit effort of alligator gar

(Atractosteus spatula), spotted gar (Lepisosteus oculatus), longnose gar (Lepisosteus osseus), blue catfish

(Ictalurus furcatus), channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides), spotted bass

(Micropterus punctulatus) and white crappie (Pomoxis annularis).

Fish collection

Fishes were collected using a combination of standardized seine hauls and gillnet sets. Small-bodied species and

juveniles of large-bodied species were collected with a 10� 2m bag seine composed of 6.4mm mesh in the wings
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92 S. C. ZEUG AND K. O. WINEMILLER
and 3.2mmmesh in the bag. A series of seine hauls was made perpendicular to shore along unique transects within

the habitat until no additional species were added to the cumulative list. The total distance travelled with the seine

was recorded for calculation of catch-per-unit effort (CPUE). In order to collect large-bodied fishes, two

multifilament gillnets were deployed between approximately 1700 h and 0700 h the next day. Each gillnet

contained three panels measuring 16.5� 2mwith 25.4- , 76- , and 51mm bar mesh. The total hours of each set were

recorded for CPUE calculations. During certain months, samples were not collected in the Brazos River due to high

flows.

Collected specimens were euthanized with tricaine methanesulfonate (MS222). Small individuals collected with

the seine were then fixed in a 10% formalin solution and transferred to 70% ethanol for storage. Large fishes were

placed on ice, returned to the lab and stored frozen. All individuals were identified, measured to the nearest mm

standard length (SL) and weighed to the nearest gram.

Data analysis

Species were classified by life history strategy using the triangular model of fish life history evolution proposed

byWinemiller and Rose (1992). Species with similar life history strategies are predicted to have similar population

responses to environmental variation including flow variation in lotic systems (Winemiller, 1989; Humphries et al.,

1999). Seven species representing three endpoint strategies (periodic, equilibrium and opportunistic) were selected

for analysis of spatial and temporal recruitment variations. Periodic strategists have characteristics (delayed

maturation, high fecundity and large adult size) that are adaptive in environments where resources for larvae and

juveniles are patchy in space and time. Species with this strategy usually have contracted breeding seasons

synchronized with favourable periods that are relatively predictable between years. Equilibrium strategists are

characterized by greater parental investment per offspring and relatively low interannual variation in recruitment.

This strategy is proposed to be associated with resource limitation and/or high threat of predation mortality for early

life stages. Opportunistic strategists have characteristics (small adult size, extended breeding seasons, high

reproductive output) that allow them to quickly colonize new habitats. Thewestern mosquitofish (Gambusia affinis)

and red shiner (Cyprinella lutrensis) represent the opportunistic strategy, bluegill (Lepomis macrochirus) and white

crappie (Pomoxis annularis) represent the equilibrium strategy, and gizzard shad (Dorosoma cepedianum), spotted

gar (Lepisosteus oculatus) and longnose gar (Lepisosteus osseus) represent the periodic strategy. Zeug and

Winemiller (in press) found that the life history characteristics of these species were concordant with the three

endpoint strategies described by the Winemiller and Rose (1992) model. Two gar species were included here,

because there is strong habitat partitioning with longnose gar more abundant in the river channel and spotted gar

more abundant in oxbows (Robertson et al. unpublished).

Specimens were classified as adults or juveniles based on minimum size-at-maturity estimates for each species

(Zeug andWinemiller, in press). Variation in recruitment of each species was evaluated spatially among two oxbow

lakes and the Brazos River channel, and temporally between the two years each habitat was surveyed. Year 1 was

relatively dry and oxbow-river channel connections were infrequent, whereas year 2 was relatively wet with

frequent hydrologic connections among habitats (Figure 1). Differences in juvenile abundance among habitats and

years were tested using generalized estimating equations (GEE). These models contained individual habitats and

years as main effects and ‘month’ was specified as the repeated variable with an autoregressive correlation

structure. When significant differences were detected, pairwise comparisons were made using Bonferroni corrected

p-values to correct for the use of the same response variable in multiple tests.

In order to provide a measure of recruitment independent of adult standing stock, species recruitment among

habitats and years was also evaluated by comparing the ratio of juvenile-to-adult individuals using the

log-likelihood test. When significant differences were detected, pairwise comparisons for all possible habitat

combinations (n¼ 3) were conducted. Probability values for pairwise tests were corrected using the Bonferroni

algorithm (aadjusted¼ 0.025). Additionally, size-frequency distributions were constructed for each species and year

to examine changes in population size structure through time. GEE models were performed in SAS version 9.1 and

log-likelihood tests were performed in NCSS 2000 version.

Principal components analysis (PCA) was performed on the sample� environmental variable matrix of monthly

data in order to associate variation in biotic and abiotic characteristics with variation in recruitment. Prior to PCA,
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Figure 1. Daily stream flow hydrograph of the Brazos River during the two year study period. Horizontal lines indicate flows required to connect
oxbow lakes with the Brazos River channel
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all variables were log transformed [log10 (xþ 1)] in order to meet the assumption of normality. PCAwas conducted

using CANOCO (Version 4, Microcomputer Power)
RESULTS

Environmental characteristics

Principal components’ analysis produced two axes that explained 82.5% of the variation in environmental

characteristics (Figure 2). Axis 1 modelled 59.5% of the total variation and described a gradient between the most
Figure 2. Sample scores of environmental variables from principal components’ analysis. Abbreviations are as follows: ID¼ isolation days,
MD¼microcrustacean density; RD¼ rotifer density; DO¼ dissolved oxygen; pred¼ predator abundance. Variable loadings are listed in Table I
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Table I. Variable loadings on the first two axes from PCA and means with standard deviations (in parentheses) of environmental
variables measured in the three habitats surveyed

Parameter Loadings OXFREQ OXRARE Brazos

Axis 1 Axis 2

Temperature (8C) �0.032 �0.033 22.6 (7.0) 23.6 (7.7) 22.3 (7.0)
Dissolved oxygen (mg l�1) 0.303 �0.442 6.75 (2.48) 7.41 (1.97) 9.05 (1.71)
Depth (cm) 0.696 0.329 120 (29) 188 (53) 310 (193)
Rotifer density (# l�1) �0.796 �0.314 537 (642) 388 (606) 28 (35)
Microcrustacean density (# l�1) �0.939 0.215 181 (179) 26 (56) 2 (3)
Isolation days �0.077 �0.921 75 (65) 161 (128) —
Predator abundance (# h�1) �0.110 �0.291 0.52 (0.40) 0.82 (0.46) 0.44 (0.28)
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frequently connected oxbow (OXFREQ) that had greater microcrustacean densities, rotifer densities and predator

abundance from the river channel that had greater depth and dissolved oxygen concentrations (Table I). Sample

scores for the rarely connected oxbow (OXRARE) had intermediate values on axis 1. Axis 2 modelled 23.0% of the

total variation and described differences between periods of hydrologic connectivity and isolation in oxbow lakes.

Low scores on axis 2 were associated with greater isolation days, rotifer density and predator abundance. High

scores on axis 2 were associated with greater depth and microcrustacean density (Table I).

Equilibrium strategist recruitment

Surveys in the Brazos River produced few juvenile white crappie (n¼ 5) or bluegill (n¼ 39), and the river

channel was only included in comparisons of juvenile abundance for these species. Significant differences in white

crappie abundance were detected among habitats, and multiple comparisons indicated that abundance was greater

in the most frequently connected oxbow than any other habitat (Tables II and III). The ratio of juvenile-to-adult

crappie was also greatest in this habitat (Table IV). Crappie abundance was similar among years; however,

juvenile-to-adult ratios were significantly different with a greater ratio in the dry year (Tables II and IV).

Size-frequency distributions indicated that the OXFREQ white crappie population was dominated by juveniles

during both years; however, the year 2 (wet year) distribution suggested good recruitment of juveniles produced

during year 1 (dry year) with an increase in the proportion of age-1 individuals (Figure 3). The OXRARE

population was dominated by adults during the dry year (year 1) with two distinct peaks corresponding to age-1 and

age-2þ individuals (Figure 4). The lack of juvenile production in OXRARE during the dry year was reflected in the

reduction of the proportion of age-1 crappie during the subsequent wet year.

Bluegill abundance was significantly greater in the rarely connected oxbow relative to the other two habitats, and

abundance was not significantly different between years (Table II). The bluegill juvenile-to-adult ratio was not
Table II. Results of generalized estimating equations comparing juvenile abundance between habitats and years

Species Habitat Year Habitat� Year

x2 p x2 p x2 p

Mosquitofish 8.43 0.015 4.51 0.034 1.21 0.547
Red shiner 10.29 0.006 6.50 0.011 4.15 0.125
Shad 9.85 0.007 10.45 0.001 9.47 0.009
Spotted gar 7.05 0.030 2.26 0.133 3.85 0.146
Longnose gar 3.82 0.148 4.63 0.031 2.26 0.323
White crappie 7.74 0.021 0.46 0.497 2.60 0.273
Bluegill 9.17 0.010 3.19 0.074 3.33 0.189
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Table III. Results of multiple comparisons of juvenile abundance between habitats using generalized estimating equations

Species BR�OXFREQ BR�OXRARE OXFREQ�OXRARE

x2 p x2 p x2 p

Mosquitofish 8.01 0.005 7.34 0.007 1.21 0.270
Red shiner 10.70 0.001 10.79 0.001 3.03 0.082
Shad 4.27 0.039 9.57 0.002 5.32 0.021
Spotted gar 5.38 0.020 6.49 0.011 1.87 0.172
Longnose gar — — — — — —
White crappie 6.88 0.009 2.08 0.149 7.66 0.006
Bluegill 5.06 0.024 8.56 0.003 8.46 0.004

p-values were adjusted using the Bonferroni correction aadjusted¼ 0.025.
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significantly different among habitats or years (Table III). Size-frequency distributions suggested that bluegill

populations in both oxbow lakes were dominated by juveniles with little between-year variation in size structure

(Figures 3 and 4).

Periodic strategist recruitment

Variation in shad abundance was significant between habitats and years; however a significant interaction

between factors complicated interpretation of results (Table II). Shad juvenile-to-adult ratios were greater in

OXRARE and the river channel relative to OXFREQ, and the year 1 (dry year) ratio was significantly greater than

the year 2 ratio (Table III). Shad populations in all habitats were primarily composed of juveniles and age-2 þ
individuals in year 1 (Figures 3–5). Year 2 size distributions in both oxbow lakes had greater proportions of age 1

individuals suggesting good recruitment of juveniles produced in year 1 (Figures 3 and 4). This trend was not

apparent in the river channel where size-frequency distributions were similar for both years (Figure 5).

Spotted gar abundance was greater in the two oxbows relative to the river channel and no difference was detected

between years (Tables II and III). Longnose gar abundance was greater in the river channel than the two oxbow

lakes, and abundance was greater in the wet year (Table II). Juvenile-to-adult ratios for gar species were greater in

both oxbow lakes than the river channel, and no difference was detected between years (Table III). Size frequency

distributions in all habitats did not reveal any obvious adult cohorts. The Brazos River longnose gar population was

dominated by adults during both years with few juveniles collected (Figure 5). The spotted gar population in

OXRARE was dominated by juveniles during both years (Figure 4) whereas the OXFREQ population had similar

proportions of juveniles and adults during both years (Figure 3).
Table IV. Results of log-likelihood tests comparing the ratio of juvenile to adult individuals of each species among habitats and
years

Species OXFREQ�
OXRARE

OXFREQ�BR OXRARE�BR Wet�Dry

G p G p G p G p

White crappie 252.78 <0.001 — — — — 38.47 <0.001
Bluegill 3.71 0.054 — — — — 0.29 0.593
Gizzard shad 192.08 <0.001 19.39 <0.001 1.29 0.257 200.46 <0.001
Gar 4.78 0.029 11.02 0.001 54.22 <0.001 1.28 0.258
Mosquitofish 66.16 <0.001 10.9 0.001 0.15 0.696 0.08 0.772
Red shiner 0.46 0.500 84.83 <0.001 114.75 <0.001 71.33 <0.001

Spotted gar ratios in oxbows were compared with longnose gar ratios in the river channel.
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Figure 3. Size-frequency distributions of the six species examined in the most frequently connected oxbow lake. Dashed lines indicate
minimum size at maturity estimates
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Opportunistic strategist recruitment

Oxbow lakes had significantly greater mosquitofish abundance relative to the river, and abundance was greater in

the dry year (Tables II and III). Mosquitofish juvenile-to-adult ratios were greater in the river and the rarely

connected oxbow than the frequently connected oxbow. There was no difference in ratios between years (Table IV).

Populations in all habitats were dominated by juveniles; however, OXRARE and the river channel had greater

proportions of adults (Figures 3–5). Size distributions in all habitats were consistent among years.

Red shiner abundance and juvenile-to-adult ratios were significantly greater in the river channel than oxbows

(Tables II and III). Between years, both abundance and the juvenile-to-adult ratio were greater during the dry year.

Populations in OXRARE and the river channel were dominated by juveniles, and distributions were similar among
Copyright # 2007 John Wiley & Sons, Ltd. River. Res. Applic. 24: 90–102 (2008)
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Figure 4. Size-frequency distributions of the six species examined in the rarely connected oxbow lake. Dashed lines indicate minimum size at
maturity estimates
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years (Figures 4 and 5), whereas the OXFREQ population had a greater proportion of adults during year 2

(Figure 3).
DISCUSSION

Patterns of juvenile abundance indicated that both habitat characteristics and variation in hydrologic connectivity

contributed to recruitment variability. Oxbow lakes supported successful recruitment of species that spanned all
Copyright # 2007 John Wiley & Sons, Ltd. River. Res. Applic. 24: 90–102 (2008)
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Figure 5. Size-frequency distributions of the four species examined in the Brazos River channel. Few crappie or bluegill were collected in this
habitat and size distributions were not constructed. Dashed lines indicate minimum size at maturity estimates
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three life history strategies, but were particularly important for equilibrium strategists (white crappie and bluegill)

that were rarely collected in the river channel. The reproductive ecology of both equilibrium species includes nest

building, and high flows, may reduce recruitment of these species in the river channel where flow is relatively

unpredictable within and between years (Winemiller, 1996; Bonvechio and Allen, 2005). The two species that were

abundant in the river channel represented the periodic (longnose gar) and opportunistic (red shiner) life history

strategies. The storage effect allows periodic-type species, such as longnose gar, to produce strong year classes

during optimal periods that may occur rarely in habitats such as the Brazos River channel where food resources for

larvae appear to be less predictable compared to oxbow lakes. Opportunistic species have extended breeding

seasons that increase the probability that at least some offspring will encounter favourable conditions for

recruitment despite relatively unpredictable environmental conditions (Winemiller, 1989; Humphries et al., 2002).

These species were common in all habitats although mosquitofish appeared to prefer oxbows whereas red shiner

preferred the main channel.

Overall, oxbow lakes supported greater abundances of most species (white crappie, bluegill, shad, mosquitofish

and spotted gar). Off-channel floodplain habitats such as oxbow lakes, have been shown to be sources of production

for certain fish populations (Crook and Gillanders, 2006) and probably are sources of biological production in most

river-floodplain systems (Junk et al., 1989; Winemiller, 2005). Oxbow lakes had greater rotifer and

microcrustacean densities than the river channel and food resources may have influenced differences in juvenile

abundance. Among oxbows, abundance patterns were similar for mosquitofish, red shiner and spotted gar; however,
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bluegill and shad were more abundant in the rarely connected oxbow, whereas white crappie were more abundant in

the frequently connected oxbow. Habitat-specific factors such as hydrology, depth, turbidity and geomorphology

significantly influence species composition and abundance in river-floodplain systems and likely contributed to

observed patterns between oxbows in the current study (Halyk and Balon, 1983; Rodriguez and Lewis, 1997; Feyrer

et al., 2004). Only two oxbows were surveyed in the current study and population dynamics may vary among

oxbows with similar connection frequencies; however, a previous study of 10 Brazos oxbows by Winemiller et al.

(2000) found that oxbows with similar geomorphology (yielding similar connection frequencies) supported similar

fish assemblages.

Analysis of juvenile-to-adult ratios yielded additional recruitment patterns that could not be elucidated with

abundance estimates alone. Shad and crappie ratios were greatest in habitats that had the lowest adult abundance, a

finding that suggests density-dependent recruitment in these species (Vandenbos et al., 2006). Spotted gar ratios in

oxbow lakes were greater than longnose gar ratios in the river channel, and juveniles comprised a small proportion

of the longnose gar population. This implies that oxbow lakes provided better conditions for recruitment; however

this may be an artefact of comparing ratios of different species. Bluegill ratios were similar in the two oxbows,

although abundance was significantly different. Recruitment of this species appeared to be strongly associated with

adult abundance. The pattern of red shiner ratios was similar to that of abundance patterns with a greater ratio in the

river channel relative to the two oxbow lakes.

Annual floodplain inundation has been inferred to be the primary factor driving fish recruitment in large rivers

(Junk et al., 1989; Bayley, 1991; Winemiller, 2005); however, only one of seven species (longnose gar) was

significantly more abundant in the wet year and no species had greater juvenile-to-adult ratios. Red shiners,

mosquitofish and gizzard shad were more abundant during the dry year, and three species (white crappie, gizzard

shad and red shiner) had greater juvenile-to-adult ratios. Additionally, greater proportions of age 1 shad and crappie

during the wet year suggested good recruitment of juveniles spawned during the previous dry year. These findings

suggest that recruitment dynamics in the Brazos River conform more closely to the LFR (Humphries et al., 1999)

than the FPC (Junk et al., 1989).

The LFR hypothesis describes fish recruitment dynamics in rivers in which over-bank flooding is relatively

unpredictable or aseasonal (Humphries et al., 1999). Flood dynamics in the Brazos River during our two-year study

period did not display a seasonal pattern. King et al. (2003) found that most species in the Ovens River, Australia,

were able to recruit in river channel and perennial floodplain habitats during hydrologic isolation, and similar

patterns were apparent in the Brazos River. Periods of isolation (low flow) in oxbows, and to a lesser extent in the

river channel, were associated with greater rotifer densities and planktonic invertebrates tend to be important food

items consumed by fish larvae at the onset of exogenous feeding (Gehrke, 1992; Bremigan and Stein, 1994; King,

2005). The transition to exogenous feeding is a critical period that may determine species’ year-class strength,

especially for periodic strategists that produce large numbers of small offspring (Miller et al., 1988;Winemiller and

Rose, 1993). White crappie and gizzard shad had the greatest mean fecundity and the smallest eggs of the seven

species examined (Zeug andWinemiller, in press) and both species produced a strong year class during the dry year.

Red shiners deposit their eggs in crevices and may require periods of low flow to reproduce successfully (Gale,

1986).

Flooding can have large effects on fish recruitment, both positive and negative. The limited duration of our study

may have under-emphasized the importance of habitat connectivity. Periods of hydrologic isolation were important

for recruitment, yet extended isolation can result in oxbow desiccation and large-scale fish mortality (Winemiller

et al., 2000). Periodic flooding is likely to be important for maintaining oxbow water levels and providing

opportunities for faunal exchange with the river channel. Zeug and Winemiller (in press) found that reproductive

activity of periodic species coincided with high flow periods in the 30-year hydrograph, and greater recruitment

should be observed in years when flood dynamics are optimal (Bayley, 1991). Periods of hydrologic connectivity

were associated with lower predator abundance; however, floods during the study occurred outside of periodic

species’ annual reproductive periods.

Observed patterns of species recruitment conformed well to tenets of the riverine ecosystem synthesis (RES)

regarding community regulation (Thorp et al., 2006). The middle Brazos River can be classified as a floodplain

functional process zone (FPZ) with individual oxbows and the river channel included as ecological nodes within the

FPZ. Recruitment success was dependent on interactions between geomorphic habitat features (oxbows with
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different connection frequencies and the river channel) and flood dynamics. These characteristics were also

associated with recruitment of fish with particular life history strategies. This differential recruitment success

among habitats and hydrologic periods may be the primary factor driving differences in assemblage structure

described previously in aquatic habitats of the Brazos River (Winemiller et al., 2000; Zeug et al., 2005).

The RES also emphasizes the importance of scale for investigations of ecological dynamics in lotic systems. The

spatial scale of the current study was sufficient for fishes that are able to move between habitat units during periods

of hydrologic connectivity (Zeug et al., 2005). Two years seemed to be sufficient to characterize recruitment of

most species, with the possible exception of gars that have greater life spans relative to other species examined.

Flood dynamics were significantly different between years however, periods of severe drought can result in

extensive drying of off-channel habitats and the current study did not cover the entire range of hydrologic dynamics

that occur in the middle Brazos. Populations of crappie and bluegill in the river channel, though small, are likely to

be important for recolinization of floodplain habitats flowing extended droughts. Future studies would benefit by

increasing the temporal scale of analysis, especially in relation to long-lived periodic species that may have strong

recruitment only during occasional years when flood dynamics are optimal. Although individual oxbows were

important habitats for recruitment during our two-year study, a given oxbow lake is a temporary floodplain feature

when viewed over longer geological time scales. Fluvial processes such as erosion and deposition create these

habitats and drive their succession. Thus, fluvial geomorphometric dynamics over the long term are as important for

the maintenance of fish populations in the Brazos River as the dynamics of lateral connectivity and basal food web

production that occur over shorter time scales.
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