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Aggregations of biological species on the basis of trophic similarity (trophospecies)
are the basic units of study in food web and ecosystem research, yet little attention
has been devoted to articulating objective protocols for defining such aggregations.
This study formulates several possible definitions based on alternative measures of
similarity and hierarchical clustering. Tweaty-four alternative methods were applied
to a food web consisting of 116 original trophic entities (OTEs) from a tropical
floodplain, for which the relative magnitude of each trophic link was estimated based
on dictary data measured as volumetric proportions. The resulting 24 trophic
hierarchies were compared based on cophenetic correlation and matrices of OTE
pairwise similarity, and patterns were interpreted based on additional ecological
analyses for this system. Similarity measures based on topological food web (pres-
ence/absence) data yiclded slightly greater cophenetic correlations than did measures
based on dietary proportions (flow webs), but, overall, OTE pairwise correlations
were not greater for one method relative to the other. The difference between these
two approaches is driven by the treatment of weak feeding links; at least for the
system considered here, distinctions among dietary generalists were obscured when
weak links were weighted lightly. Additively combining the predator and resource
aspects of each OTE’s trophic role performed better than combining them multiplica-
tively. In general, there was little correspondence between OTE overlap in resource
use and the extent to which predators were shared. Two measures of cluster
similarity, one designed by us specifically for food webs (maximum linkage) and the
other a standard method (average similarity between clusters), yiclded more consis-
tent and ecologically interpretable patterns of aggregation than other measures of
cluster similarity considered. In deciding whether two trophospecies should be
assigned a trophic link, the maximum linkage convention (in which a link is included
if any pair of OTEs, oné‘in each trophospecies, are linked) produced more aggrega-
tion than the minimum linkage convention (in which a link is included only if every
pair of OTEs, pair members in each of the two trophospecies, is linked). The choice
of similarity level for defining trophospecies remained an unresolved issue based on
our analysis of this dataset. Perhaps the greatest challenge is posed by sampling bias
within empirical datasets, and we ultimately conclude that it is difficult to identify
trophospecies in this dataset by strictly objective criteria.

P. Yod:is, Dept of Zoology, Univ. of Guelph, Guelph, ON, Canada NIG 2W1
(pyodzis@uoguelph.ca). — K. O. Winemiller, Dept of Wildlife and Fisheries Sciences,
Texas A&M Univ., College Station, TX 77843-2258, USA.

A major goal in ecology is to comprehend patterns and  Polis and Winemiller 1996). Within this framework, one
processes of ecosystems in their entirety. Most recently, can contemplate as a unit all the species occupying
this objective has found expression in a purely trophic some habitat. At least two categories of trophic whole-
view of the ecosystem concept (see reviews in Pimm  system theories can be distinguished: static food web
1982, Lawton 1989, Yodzis 1989, Cohen et al. 1990, models and trophodynamical models (both are dis-
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cussed, though not always clearly distinguished, in the
reviews cited above), A topological food web is a list
of which species in the system eat which others, with
trophic interactions regarded simply as ecither present
or absent for each pair of species. A dynamic food
web is a model of population and predation dynamics
for each species in the system. Formulation of such a
model requires the specification of food web structure,
but in addition to presence/absence information on
feeding links, it also requires estimation of the magni-
tudes of those links.

A typical ecosystem contains hundreds or thou-
sands of biological species. Even having made the
simplification of adopting -a purely trophic viewpoint,
one is left with an impracticably complex system.
Therefore, trophic 'studies frequently begin by group-
ing trophically similar species into aggregate entities
that are sometimes called trophospecies (Yodzis 1988).
Such aggregate entities are the fundamental units of
food web research, yet, in the food web literature,
trophospecies have been defined by ad hoc or subjec-
tive means rather than by objective protocols.

The first generation of whole-system trophic data
contained species that were highly aggregated, and the
degree of aggregation is uneven within the food web.
At the base of the food web, highly aggregated
trophospecies, such as algae, may contain hundreds of
biological species. Other trophospecies, such as verte-
brates, are resolved to the biological species level; still
others, such as invertebrates, are intermediate in taxo-
nomic resolution. Such webs introduce subjective bias
into the comparative study of food web features
(Paine 1988, Hall and RafTaelli 1993).

Our intent is not to denigrate the work of the com-
pilers of such food webs, because these researchers
generally were interested in the role of particular or-
ganisms within their food webs, and sometimes the
structure of the food web was of secondary impor-
tance. Moreover, it may never be possible to resolve
all trophic units of a food web at the level of biologi-
cal species. This task would be daunting even for a
large team of specialists working on a relatively spe-
cies poor system. Even so, the first generation of the-

oretical work that was based on this flawed data base,
(covered in the reviews cited earlier) stimulated a sec-’

ond generation of empirical work that attempted to
produce more highly resolved food webs (e.g., Warren
1989, Winemiller 1990, Hall and Raffaelli 1991, Mar-
tinez 1991, Polis 1991). Although uneven and subjec-
tive taxonomic aggregation remains a problem for this
second generation of data, these webs tend to contain
more taxa and greater taxonomic resolution than the
first generation data.

Even if full resolution at the species level were pos-
sible within a food web, some degree of aggregation
would be desirable. Fully resolved food webs would
be too complex to work with for many purposes. For
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instance, population dynamical models with hundreds
or thousands of species would be intractable. In addi-
tion, a tentative theoretical framework has been built
up using the first gencration food web data. One
might wish to know how closely the first generation
data approximate aggregated descriptions that have

_been arrived at by objective protocols rather than. by

ad hoc judgements (Sugihara et al. 1989, Martinez
1991, 1993). As a guide to future empirical and theo-
retical studies, one might want to know what kind of
aggregation, and what extent of aggregation, is ac-
ceptable for a given analysis. For large complex
ecosystems, studies of processes, such as nutrient cy-
cling, probably are modelled most efficiently using ag-
gregations of functionally similar species. For .
statistical comparisons of food web attributes, such as
trophic link density, the rules for species inclusion
and aggregation would have to be consistently applied
to all webs being compared.

Conclusions drawn from trophic theories will be
influenced by how trophospecies are defined. This cru-
cial issue has only begun to be addressed up to now.
In this paper, we propose, evaluate, and compare a
number of different objective trophospecies defini--
tions, using a well-documented dataset obtained from
field research. The cumulative annual food web for
Cafio Maraca, a floodplain creek in the Venezuelan
llanos (Winemiller 1990), has 88 fish species (54 com-
mon) and 62 non-fish prey taxa for a total of 150
taxa (116 common). The fishes were distinguished to
the level of biological species. Non-fish taxa are more
aggregated than fishes, but are relatively well resolved
by earlier food web standards (e.g., invertebrate or-
ders or families). Because the web is entirely based
upon dietary data derived from estimates of feeding in
the field, all feeding links involve fishes as consumers.

.In this food web, fishes display a diverse array of

ecological niches (feeding on various forms of algae,
macrophytes, detritus, protozoa, invertebrates, fishes,
etc.), hence the web has considerable vertical struc-
ture. All food web datasets suffer from a variety of
limitations in the inclusion and handling of basal ele-
ments, top predators, and lateral/intermediate ele-
ments. Like many datasets, the Maraca foodweb
aggregates taxa such as algae and invertebrates more
than vertebrates. However, this dataset has one fea-
ture that is uncommon yet essential for our analysis
of trophospecies. The magnitude of each trophic link
(trophic interaction strength) is estimated based on
dietary volumetric data derived from large field sam-
ples for most of the consumers. This enables compari-
sons, as bases for the definition of trophospecies, of
the coarse measures of trophic similarity based on
purely topological data (trophic link presence-absence)
with similarity measures based on quantitative esti-
mates of biomass flow between prey and predator.
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Methods
Trophic similarity

The central issue in defining trophospecies is how we
choose to define “trophic similarity”. This issue has
much in common with alternative definitions of dietary
similarity or resource utilization overlap, with the addi-
tional question of how to treat the simultaneous preda-
tor and resource roles of a given species within a food
web. Should we combine these two aspects by regarding
them as distinct dimensions of trophic activity (multi-
plicatively), or by regarding shared prey and shared
predators as perfectly equivalent (additively)?

As well, we may use different information in defining
trophic similarity, depending upon the overall trophic
viewpoint adopted. We will consider similarity mea-
sures that use only the food web information of pres-
ence or absence of each species in the diet of each other
species (topological similarity), and we will also con-
sider measures that utilize quantitative information
about the strengths of feeding links (flow similarity).

Original trophic entities

The ideal trophic data would be resolved to the biolog-
ical species level (if not further, for instance into life
stages or size classes within species), and we have been
writing as’ if that kind of data were available. But of
course, it is not. Even in the best current (and foresee-
able) data, at least some of the original trophic entities
(OTEs), in terms of which the data are given, are
aggregates of species. We can apply all the ideas dis-
cussed thus far to such data, simply by everywhere
replacing the word “species” with the acronym “OTE"”.
We will do just that in the remainder of our discussion.
In a technical sense, there is no difficulty in working
with aggregate OTEs, but at this point, we do not know
to what extent this might influence final outcomes of
inferest. Indeed, that is one question that we hope to
address indirectly by investigating the influence of sub-
sequent aggregation of OTEs.

Topological similarity

Suppose we have nothing but purely topological food
web data. Probably the best known similarity measure
for binary data is the similarity coefficient of Jaccard
(1900), for objects that may or may not fit each of two
categories:

S"-a+b+c

where a is the number of objects that fit both cate-
gories, b is the number of objects that fit the first
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category but not the second, and ¢ is the number of
objects that fit the second category but not the first.

This coefficient has been used to calculate trophic
similarities in what we will call an additive way (Sugi-
hara et al. 1989, Martinez 1991). For two species i and
J» the additive Jaccard similarity is

a

Sra(ij) = m

where a is the total number of prey and predator
species that species / and j have in common, b is the
number of species that are prey or predators of species
i but not of species j, and ¢ is the number of species that
are prey or predators of species f but not of species /.
Notice that in this definition, species’ roles as predators
and resources are not distinguished: in each of the
numbers a, b, and ¢, common prey and common preda-
tors are lumped indiscriminately together in the same
sum.

On the other hand, if we regard the predator and
resource roles as distinctly different dimensions of
trophic activity, then we need to explore alternative
ways in which these two aspects interact. One can
imagine cases in which the composition of an animal’s
diet might influence the composition of its set of preda-
tors, and vice versa. For instance, different diets might
require different patterns of spatial movement, which
could favor success by different predators; or avoiding
different predators might require different behaviors,
which could influence diet. One might hope that, in
general, such effects tend to be atypical, or not very
strong. Then the predator and resource roles would be
largely independent. Our task is analogous to calculat-
ing resource utilization overlaps in a multidimensional
niche space. In that setting, independent dimensions of
activity yield multiplicative overlaps (May 1975). The
safne reasoning applics in our case.

A multiplicative Jaccard similarity may be written

a, a,

@

Stalis)) = ay+by+cy a,+bs+cy
where g, is the number of species that are prey of both
species i and species /, b, is the number of species that
are prey of species { but not of species j, c, is the
number of species that are prey of species j but not of
species i; and a, is the number of species that are
predators of both species { and species j, b, is the
number of species that are predators of species / but not
of species j, ¢, is the number of species that are preda-
tors of species j but not of species i. For cases in which
either of the two denominators in eq. 2 was zero, a
value of zero was assigned to Sy,

The multiplicative form distinguishes the roles of
predator and resource for each species, and requires
high similarity in both roles to achieve a high score,
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unlike the additive form. For instance, two species with
identical prey but completely different predators would

necessarily have Sy, =0, whereas Sy, could take any.

value in the interval (0,1). We will make other compari-
sons below.

Flow similarity

Suppose we know, in addition to the food web topol-
ogy, some measure fy, of the strength of the trophic link
from species 7 to species j, for all pairs J, j. Typically
these link strengths would be quantified by some sort of
interaction strength or flow through the food web. In
terms of the flows f, we can define for each species i and
for all other species k: the proportion p,, of consump-
tion by species i that comes from species k, and the
proportion g, of consumption of species i that goes to
species k. Later in this paper we will describe a method
for estimating flows, hence the proportions g, from the
proportions p (for instance, from stomach content data)
together with data on body size.

Given the p’s and the g¢’s, we can define trophic
similarities analogous to the usual dietary similarities
that use only the p’s; we will call them “flow similari-
ties”. Of course, we can also define topological similar-
ities from this information (which includes the food
web) if we wish. Again we will distinguish an additive
form and a multiplicative form, as we did for topologi-
cal similarity. We will use the additive form

Yi (e + Gudn)

Spalicf) =—
\/z} L+ 9 Y Ph+aR)

and the multiplicative form

Spulh f)———&”i”"’—- L @

f
‘7 DPE Yk Gk [Pl 2k Dk
V= v

Trophic similarity between clusters

In order to decide, at a given level of similarity, which
OTEs to aggregate together into trophospecies, one
must apply some sort of clustering algorithm. This
requires a rule for defining similarity between arbxtrary
clusters (aggregates) of OTEs based on the pairwise
similarities between OTEs. In many applications of
cluster analysis, there is no literal functional meaning of
a cluster, nor of similarity between clusters. Neverthe-
less, one can define “abstract” cluster similarity mea-
sures such as single linkage and complete linkage (for
instance, Anderberg 1973), and use them sensibly to
discover meaningful higher-level entities.
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* defined flows for clusters, we can extend the flow

We can apply this methodology to trophic clusters,
yet in doing so, we are faced with a somewhat novel
situation. As a purely trophlc entity, a cluster of OTEs
has a literal functional meaning: it consumes, and it is
consumed. Therefore, an abstract definition is not re-
quired for trophic similarity between clusters, and we
can derive it from trophic similarity between OTEs.
Such a derivation is, however, not entirely ambiguous.
First, a convention must be adopted. In the case of
topological similarities, we need a convention that tells
us when there is a trophic link between two clusters; in
the case of flow similarities, we need to define flows
between clusters.

We will consider two alternatives, that apply both to
topological and to flow similarities: maximum linkage
and minimum linkage (Martinez 1991). Under the con-
vention of maximum linkage, there is a trophic link
from cluster I to cluster J if and only if there is a
trophic link from some OTE in 7 to some OTE in J. On
the other hand, minimum linkage calls for a trophic
link from cluster I to cluster J if and only if there is a
trophic link from every OTE in I to every OTE in J.
The maximum linkage convention yields the largest
number of links among clusters that one plausibly
could arrive at; while minimum linkage produces the
smallest number of links. The corresponding flow, when
defined for OTEs, is simply the sum over all flows
between OTEs in the two clusters if there is a link
between the clusters; otherwise the flow is zero.

Having defined trophic linkages for clusters, we can
define trophic similarities for clusters exactly the same
as we did for species (or OTEs), using the additive and
multiplicative Jaccard similarities STA, STM. Having

similarities SFA, SFM to clusters. In both cases, when
calculating the similarity between two clusters / and J,
we take the sums in eqs (1-4) over all OTEs external to
I and J. For each of the two contexts of topological
similarity and flow similarity, this yields two similarity
measures for clusters, which we will call the natural
maximum linkage similarity NMAX and the natural
minimum linkage similarity NMIN.

We also explored four other similarity measures
taken from standard cluster analysis. In the single
linkage method (SL), the similarity between two clus-
ters is the maximum of the similarities between pairs of
OTEs, one in each cluster. In the complete linkage
method (CL), the similarity between two clusters is the
minimum of the similarities between pairs of OTEs, one
in each cluster. Following the method of average simi-
larity within clusters (ASWC), the similarity between
two clusters is the average similarity of all OTEs that
would be in the new cluster formed by merging the two
clusters under consideration. Following the average
similarity between clusters method (ASBC), the similar-
lty ‘between clusters is the average similarity over all

_palrs of OTEs, one in each cluster.
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Estimation of flows from dietary proportions

Methods used to create the Caiio Maraca food web
dataset are described in detail in Winemiller (1990). The
fishes, which are the only consumers in the web, are
resolved to species, most invertebrate taxa are resolved
to order, and primary producers and detritus are sepa-
rated into functional groups, such as diatoms, desmids,
filamentous algae, or macro-algae (Chara). The trophic
links in this food web are quantified as dietary volumet-
ric proportions, p,, and not the consumption rates, or
flows, f. Generally speaking, flow data are produced
less frequently than are dietary proportion data. How-
ever, we do have data on the body sizes and relative
abundances of our consumers, which can be used to
estimate energy flows in the food web.

The ingestion rate of individual animals within broad
metabolic categories (endotherms, vertebrate ec-
totherms, invertebrate ectotherms) follows an allomet-
ric scaling law of the form I = aw®, where I is ingestion
rate, W is body weight, and a and b are constants (see
data summary in Yodzis and Innes 1992). Since we only
need relative ingestion rates, and all of our predators
are (metabolically similar) fishes, the value of the coeffi-
cient a is irrelevant and we can simply set it equal to 1.
The power b is well approximated by 0.75 for fishes
(Brett 1971, Brett and Groves 1979, Gerking and Lee
1983).

Using each species’ average body weight (based on
all captured specimens), we obtain a crude estimate of
relative ingestion per individual. Multiplying that by
the relative abundance of each species produces an
estimate of relative total ingestion I, for each species j in
the community. Multiplying that by the dietary propor-
tions p,, for species j converts those to estimates for the
relative energy flows f;,. From these numbers we can
immediately obtain estimates for the proportions g,
which enables us to calculate the similarities (3,4).

Defining trophospecies

For a given food web (and possibly for an accompany-
ing set of flows), once we have chosen a definition of
trophic similarity between OTEs and a definition of
trophic similarity between clusters, we can perform a
hierarchical cluster analysis to get a hierarchical classifi-
cation of trophospecies in that food web. Hence, for
any chosen level of similarity, the clustering up to that
level gives us an aggregation of OTEs into trophospe-
cies at the given level of similarity.

We now have four alternative definitions for trophic
similarity between OTEs and six alternative definitions
of trophic similarity between clusters, producing 24
different hierarchies. We will denote these hierarchies
by symbols of the form (S1-S2-53), where SI denotes
the information used as a basis for similarity (S1 =T
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corresponding to topological similarity, S1 =F to flow
similarity), S2 indicates how the predator and resource
aspects of trophic activity are combined (S2 = A corre-
sponds to additive, S2 =M to multiplicative), and S3
gives the method used to define similarity between
clusters (one of the 6 abbreviations, of 2 or 4 upper case
letters, introduced for cluster methods in the above
section “Trophic similarity between clusters”). Thus,
for example, the clustering hierarchy (T-A-ASBC) uses
topological additive similarity (eq. (1)) for OTEs, and
method ASBC, average similarity between clusters, for
similarity between clusters. We compared and con-
trasted these different classifications by means of
cophenetic correlation and by an appraisal of the con-
cordance between the resulting hierarchies for the Caiio
Maraca food web and the magnitudes of OTE pairwise
similarities from similarity matrices based on alterna-
tive methods (T vs F, A vs M), plus any additional
ecological information gathered on this system. For
verbal economy, we refer to the dendrograms from
hierarchical clustering as “trees”.

Sokal and Rohlf (1962) proposed a method, known
as cophenetic correlation, for the evaluation of hierar-
chical classifications. The method is based on the fol-
lowing idea. In a sensible hierarchical classification, one
would expect that the more similar are any two OTEs,
the higher should be the similarity level at which they
first share membership in a cluster. Indeed, one expects
that in a really good tree this should hold even in a
quantitative sense: the similarity level at which any pair
of OTE:s first share membership in a cluster should be
quite close to their original similarity as OTEs.

Sokal and Rohlf formalize this idea as follows. Given
a tree, for any pair of OTEs, call their phenetic similar-
ity the highest similarity level at which those two OTEs
share membership in a cluster (that is, the similarity
level at which they first become lumped together in a
cluster). If we make matrices of the pairwise phenetic
similarities (the phenetic matrix) and of the original
similarities from which the tree was derived, then the
cophenetic correlation of the tree is the product mo-
ment correlation coefficient between the clements of
those two matrices. Cophenetic correlation provides an

.objective measure of the suitability of alternative

trophospecies definitions that are based on hierarchical
cluster analyses. '

Results
Cophenetic correlation

Table 1 shows the cophenetic correlations of the 24
trees derived from our four OTE similarity measures
((topological vs flow web) x (additive vs multiplicative
integration of consumer and resource roles)) and our
six cluster similarity measures. Looking first at the OTE

331




Table 1. Cophencuc correlations for 24 different notions of trophic similarity, in which each OTE’s role as a predator and as
a resource is taken into account: 4 notions of similarity between OTEs (topological or flow, additive or multiplicative) and 6
notions of similarity between clusters of OTEs, listed in the first column.

Clustz-t similarity

Topological similarity Flow similarity Row average
Additive Multiplicative Additive Multiplicative

NMAX 0.92 0.88 0.73 0.63 0.79

NMIN 0.59 0.53 0.72 0.65 0.62

SL 0.91 0.90 0.52 0.30 0.66

CL 0.78 0.74 0.83 0.63 0.74

ASWC 0.85 0.75 0.78 0.71 0.77

ASBC 0.95 0.96 0.86 0.78 0.89

Column average 0.83 0.79 0.62 7

similarities, we see that, in terms of cophenetic correla-
tion, the two topological similarity measures Sy, and
Stm tended to be superior to the two flow similarity
measures Sg, and Sg,,. The average similarity between
clusters (ASBC), the single linkage method (SL), and
the natural maximum linkage similarity (NMAX) pro-
duced the highest cophenetic correlations (average =
0.90-0.95) for topological webs. The ASBC clustering
algorithm produced the highest cophenetic correlations
for flow webs (average = 0.82).

Phenetic matrices also can be used to compare trees.
For any two trees based on the same set of OTEs, we
will call their phenetic correlation the product moment
correlation coefficient of the corresponding elements of
the phenetic matrices for the two trees. The more
similar the two trees, at least in terms of phenetic
structure, the higher the phenetic correlation. Fig. 1 is a
metacluster analysis of results from our 24 cluster
analyses, using phenetic correlation to measure similar-
ity between trees, and average similarity between clus-
ters to measure similarity between tree clusters. The
major distinction seen in Fig. 1 is between topological
similarities and flow similarities for OTEs. Within each
of these, the additive and multiplicative similarities
segregated reasonably well. The three best OTE cluster

“esimilarities (based on cophenetic correlation analysis - -

ASBC, SL, and NMAX) produced very similar trees
for each of the two topological OTE similarities. The
correlation between the ASBC-SL-NMAX clusters
based on the additive versus multiplicative method for
integrating consumer and resource roles in topological
webs was approximately 0.4. The NMIN method pro-
duced outlier clusters among topological web-based
trees, and the SL method produced an outlier cluster
among flow web-based trees (Fig. 1). For the dietary
proportions-based method (flow similarity), the greatest
tree similarity was between the two superior clustering
algorithms (ASBC and CL based on cophenetic correla-
tion) and the additive method for integrating consumer
and resource roles.

From the standpoint of cophenetic similarity, four
tentative conclusions can be drawn: 1) overall, the

kKX ?)

»

Jaccard-based, topological measures of similarity for
OTEs tended to provide more consistent patterns than
flow similarities; 2) the ASBC, SL, and NMAX cluster-
ing algorithms performed better than the other three
clustering algorithms for topological webs; 3) there is
little basis for choosing between the two methods of
integrating consumer and resource data when using
topological measures (though the additive method per-
formed slightly better; Table 1), and between our three

T A NMAX
__1ET A SL
T A ASBC
——— T A ASWC
[ TMa
TACL
T M ASWC
- F M ASBC
F M ASWC
FMCL
F M NMAX
F A ASBC
FACL
—— F A ASWC
F M NMIN
F A NMIN
F A NMAX
FMSL

| [ FASL

Fig. 1. Metacluster analysis of 24 alternative trophic hier-
archies, based on differing trophic similarity measures, for the
Caiio Maraca food web. Abreviations for similarity measures
are defined in the text.
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Astyanax

Markiana

Markiana

B Gymnotus carapo
B Caqustaia krausk

B Hoplias malabaricus

B Pygocentrus cariba
O Roeboides dayl

Fig. 2. (Top) Trophic flow percentages of major diet items
(volumetric g; > 0.05) consumed by two omnivorous characid
fishes, Astyana bimaculatus and Markiana geayi, at Caiio
Maraca based gut contents analyses from, 12 monthly samples.
(Bottom) Trophic flow percentages for the major predators
(volumetric g, > 0.03) associated with each of these omnivores
during the same period.

best measures of cluster similarity using topological
measures (though ASBC performed slightly better;
Table 1); and 4) the ASBC and CL methods based on
the additive method of consumer and resource integra-
tion performed best for flow measures of similarity.

L4

Tree comparisons

In this section, several of the trees are compared and

discussed from the standpoint of clustering patterns

and the natural history of the species involved. Our
objective is to see which, if any, of the trees seems to be
identifying ecologically meaningful trophic aggrega-

tions. The patterns of aggregation in the trees can be

interpreted in relation to the primary data on shared
diet elements and shared predators. We will focus atten-
tion on two morphologically similar omnivorous
characids, Astynax bimaculatus and Markiana geayi,
that have a high degree of ecological overlap. Fig. 2
compares the proportional biomass flow data for each
fish in terms of its dual roles as a consumer and
resource. We illustrate the trees as a hierarchical set of
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Totragonopterus

Sy, o

LX B X J

i
i

&1 nonlish OTES

Fig. 3. Essential features of tree T-A-ASBC (cluster similarity
based on topological additive similarity between OTEs and the
average similarity between clusters convention) in terms of the
relationship of Astyanax fasciatus and Markiana geayi with
each other and with similar staxa and nodes of increasingly
dissimilar taxa. Similarity varies linearly from 0 (extreme left
of tree) to 1 (extreme right of tree).

branching nodes with increasing levels of aggregation in
the representation of terminal nodes as one moves away
from the terminal nodes Astyanax and Markiana. In
this way, the size and complexity of the tree is reduced
and OTE groupings within trees that were derived from
alternative rules for clustering and estimating trophic
similarity can be compared.

Topological vs flow similarity

Differences in the manner in which the topological (link
presence/absence) and flow (dietary proportions) crite-
ria influence hierarchical aggregation can be illustrated
by comparing the positions of species in trees (T-A-
ASBC, Fig. 3) and (F-A-ASBC, Fig. 4). All other
factors being equal, the Jaccard-based method of com-
puting OTE similarities (topological similarity (T))

Markiana
I
T mpmbranciun
fanplas
I ]
— T

Fig. 4. Essential features of the tree F-A-ASBC (cluster simi-
larity based on flow additive similarity between OTEs and the
average similarity between clusters convention) in terms of the
relationship of Astyanax fasciatus and Markiana geayi with
each other and with similar staxa and nodes of increasingly
dissimilar taxa. .
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yielded more intuitive ecological aggregations than did
the dietary proportions-based method (flow similarity
(F)). For example, tree (T-A-ASBC) (Fig. 3) joined
Astyanax, Markiana, and a third pelagic omnivorous
characid, Triportheus, at a similarity of 0.71. This tree
joined all pelagic omnivorous fishes at a similarity of
0.6, and all omnivorous fishes at 0.55. In contrast, the
flow:-based tree (F-A-ASBC) (Fig. 4) joined two larger
nodes containing Astyanax and Markiana at a similar-
ity of 0.72. These nodes contained a diverse collection
of feeding guilds, including piscivores (Hoplias, Gymno-
tus), algivore/detritivores, invertivores, and even
macroscopic algae (Chara). A distinguishing feature of
tree (F-A-ASBC) is that it clusters some nodes based on
high similarity in the role of predator, and clusters
others based on high similarity in the role of resource.
Tree (T-A-ASBC) performed better in grouping species
with similar body sizes, microhabitats, and diets. One
might assume that large similarity in body size, micro-
habitat utilization, and swimming behavior places spe-
cies at risk of falling prey to many of the same
predators, however the divergence between the trees in
Figs 3 and 4 suggests that this is not a strong feature in
this food web.

By using dietary proportions as weighting factors
both for resource consumption and for harvest by
predators, the fiow web convention emphasizes resource
specialization over generalization in clustering al-
gorithms. If an animal has a broad diet (i.e., each prey
contributes a small fraction to the total diet) and it is a
common prey of some predator, then clustering al-
gorithms will group that animal with the other common
prey of its predator. In this case, there is greater weight
assigned to the animal’s role as a resource in the food
web. If the animal is a resource specialist (only a few
resource categories are common in the diet) and is itself
a small dietary component for predators, then it will
cluster with other members of a feeding guild based on
its diet. So the dual roles of intermediate species in a
food web will be weighted more heavily toward its role
as a predator or as a resource depending on which role
is more specialized.

Additive vs multiplicative similarity

Differences between the Jaccard summation (A) and
Jaccard product (M) methods of calculating node simi-
larity can be seen by comparing tree T-A-ASBC (Fig. 3)
with tree T-M-ASBC (Fig. 5). Whereas the summation
method joined Astyanax and Markiana (with
Triportheus) at 0.71, the multiplicative method joined
them as members of clusters at 0.2 (Fig. 5). The
Astyanax and Markiana clusters in the M tree con-
tained pelagic and benthic omnivores and invertivores,
plus an invertebrate and fish-feeding cichlid (Cagque-
taia). Because the additive method produced a tree with
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Fig. 5. Essential features of the tree T-M-ASBC (cluster simi-
larity based on topological multiplicative similarity between
OTEs and the average similarity between clusters convention)
in terms of the relationship of Astyanax fasciatus and Marki-
ana geayi with each other and with similar staxa and nodes of
increasingly dissimilar taxa.

a much more hierarchical branching structure (Fig. 3)
and joins ecologically and morphologically similar spe-
cies at higher levels of similarity, we deem it superior to
the multiplicative method. Again, patterns in tree T-M-
ASBC appear to be more heavily influenced by species’
roles as resources when compared with tree T-A-ASBC.

ASBC clustering vs NMAX clustering

The method of clustering had a large influence on tree
structure, and two methods, ASBC (average similarity
between clusters) and NMAX (natural maximum link-
age), yielded superficially similar results. The structure
of trees produced by the two clustering methods (in
each case, using topological data and similarity based
on the Jaccard summation method) is illustrated in Figs
3 and 6. In each case, the tree bifurcates into two large

S
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Fig. 6. Essential features of the tree T-A-NMAX (cluster
similarity based on topological additive similarity between
OTEs and the natural maximum linkage convention) in terms
of the relationship of Astyanax fasciatus and Markiana geayi
with each other and with similar staxa and nodes of increas-
ingly dissimilar taxa. .
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clusters at a low similarity of about 0.05. In both trees,
one cluster consists of fish OTEs (in which case, each
OTE is associated with data for the role as predator
and as resource) and the other cluster consisted of
non-fish OTEs (nodes only associated with the role as
resource). Had we quantitatively estimated diets for the
non-fish nodes, the fish vs non-fish bifurcation in these
two trees would likely vanish.

The ASBC and NMAX clustering methods each
produced a tree with a highly hierarchical clustering
structure, however the NMAX tree contained more
branching nodes (Figs 3, 6). Both methods grouped
Astyanax, Markiana, and Triportheus at high levels of
similarity (ASBC at 0.71, NMAX at 0.72). In each tree,
this trio of fishes was joined, at successive nodes, by
clusters comprised of other omnivores, but the specific
OTEs varied between the two trees. Based on species’
feeding niches, ecomorphology and microhabitat use,
the ASBC tree (Fig. 3) produced a more logical hier-
archy of clusters than the NMAX tree (Fig. 6). For
example, Aequidens and Cichlasoma, the two species
that first cluster with the focal trio of pelagic omnivores
in tree NMAX, are omnivorous cichlids that forage on
invertebrates and seeds on or near the substrate and
vegetation.

Comparisons of OTE pairwise correlations

Here we compare the magnitudes of correlations for
nine selected fish OTE pairs from matrices of OTE
pairwise product-moment correlations that were based
on different similarity measures. This pairwise OTE
analysis eliminates the choice of clustering algorithm
from our evaluation of alternative rules used for esti-
mating trophic similarity. Eight matrices were consid-
ered based on topology vs flow webs as well as
treatment of resource data only, consumer data only, or
additive vs multiplicative integration of resource and
«onsumer roles. In order to have a range of possibilities
for viewing OTEs’ simultaneous roles as consumers and
resources, we chose, more or less randomly, nine pairs
of small fishes among those that feed low in the food
web and are themselves preyed upon by piscivorous

fishes. Similarities (product-moment correlations) be--

tween a small algivorous loricariid, Nannoptopoma
spectabilis, and three other algivores from divergent
higher taxa (Steindachnerina argentea, Prochilodus mar-
iae, Poecilia reticulata) were examined. In addition,
similarities between the omnivorous characid, Creno-
brycon spilurus, and thee other omnivores (Astyanax
bimaculatus, Triportheus sp., Aequidens pulcher) plus an
invertebrate feeder, Hemigrammus sp., and three other
invertebrate feeders (Aphyocharax alburnus, Characid-
fum sp., Apistogramma hoignei) were examined. Diets
tended to have a high overlap among nine species pairs,
and overlap for shared predators ranged from zero to
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high, which provides a range of conditions for
comparison. : -

We will first compare similarity measures based on
dietary proportional data (i.e., flow webs). In all but
one case, the additive similarity was smaller (mean =
0.42) than resource-based similarity (mean = 0.79), an
indication that species with similar diets tended not to
have similar predators. In the case of Ctenobrycon and
Astyanax, the additive similarity was only slightly
greater than the resource-based similarity (0.71 and
0.74, respectively). When additive similarities were com-
pared with predator-based similarities, the opposite re-
sult was obtained, with all but one of the additive
similarity values being larger than the predator-based
similarities (mean = 0.25). Again, in the case of Cteno-
brycon and Astyanax the additive similarity value was
only slightly smaller than the predator-based similarity
(0.74 and 0.75, respectively), indicating that these spe-
cies share a large proportion of common prey and
predators. In the case of the multiplicative similarities,
wherever there was a zero value for one of the two
similarity measures (resource-based or consumer-based)
for a species pair, then the multiplicative similarity for
that species pair also is zero. Consequently, the multi-
plicative similarities were smaller than the additive sim-
ilarities in all nine cases (multiplicative mean = 0.19).

The patterns for topological webs (link presence/ab-
sence data) were very similar to those described for flow
webs. In all but one case, the additive similarity was
smaller (mean =0.53) than resource-based similarity
(mean =0.60), and again, the exception was the pair
Ctenobrycon-Astyanax with a small difference (additive
similarity = 0.63, resource-based similarity = 0.60).
Again, the additive similarities were larger than the
consumer-based similarities, with the one exception be-
ing Ctenobrycon-Astyanax (consumer-based similar-
ity =0.86). In every case, multiplicative similarities
(mean =0.16) were smaller than additive similarities
based on topological data.

. If we compare the topological data vs flow data using
“the same basis of calculating similarity, we find that for
the resource-based web, similarity values are lower in
the topology web for all but one of the nine species
pairs (the pair Hemigrammus-Aphyocharax). Using

“only the consumer-based web, approximately half of
the species pairs had greater similarity values based on
topological data and the other half had lower values.
The same pattern occurred for the additive and multi-
plicative webs (about half were higher and half lower
for topological vs flow data).

Overall, it appears that the additive method of inte-
grating species’ roles as consumers and resources in
food webs is superior to the multiplicative method for
aggregating species into trophospecies. The perfor-
mance of topological and flow webs was similar in most
comparisons, however flow data tended to yield greater
similarity values than topological data when species
dietary data were the sole basis for similarity.
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We performed a cluster analysis of the eight similar-
ity matrices based on the product-moment correlation
cocfficient of each pair of similarity matrices. The addi-
tive- and multiplicative-based similarity matrices clus-
tered with the consumer-based similarity matrices at
0.43 and this cluster grouped with the resource-based

similarity matrices at r=0.01 (the flow-based and to-

pology-based resource-based matrices clustered at r =
0.71), an indication that species’ roles as resources for
predators had a dominant influence on both the addi-
tive and multiplicative integration methods.

Discussion

Viewed at the level of biological species, even the
smallest and simplest ecosystems in nature are im-
mensely complex. There are two approaches one may
take to render these systems manageable: one may
consider a small subset of those species present using a
fine scale of resolution, or one may aggregate species
into higher order entities to consider a larger fraction of
the species int the ecosystem. If aggregation is based on
a trophic viewpoint, then we are conceiving trophospe-
cies. The first approach, looking at small subsets of the
species present, has been the method taken in most
community studies during the past three decades or
more (e.g., in viewing predator-prey interactions,
guilds, mutualisms, etc.). The second approach has
been under active investigation for a couple of decades,
but seldom has the aggregation been performed in an
objective way (Paine 1988, Polis 1991, Hall and Raf-
faelli 1993).

Several decisions have to be made in order to define
trophospecies objectively. We will discuss each of these
decisions in turn, and then we will comment on the
assignment of trophic links in aggregated food webs.

¥ Topological vs flow similarity

Our most surprising result was the superiority, in terms
of cophenetic correlation, of topological similarity mea-
sures for OTEs (i.c., presence vs absence of trophic

interactions) over flow similarities (i.c., the relative °

magnitude of trophic interactions are estimated). The
evaluation of topology vs flow similarity that was based
on the magnitudes of species pairwise correlations
yielded equivocal results. Correlations were higher for
the flow web (relative to the topology web) when based
on dictary data only (i.e., the consumer role). About
half of the correlations were higher and half lower for
the flow webs that were based on OTE’s roles as
resources only. About half of the correlations were
higher and half lower for the flow web based on the
additive and multiplicative methods for integration of
diet and predator data. One would think that flow
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similarities, which take into account the relative abun-
dances of each species’ prey and predators, would form
the basis for a more effective concept of trophospecies.
One might expect that the more precise and accurate
the information on which a model is based, the more
accurate will be the outputs derived from that model.
Yet, the coarser information contained in the topologi-
cal presence/absence trophic data tended to yield higher
cophenetic correlations than did the proportional flow
data.

Do topological webs provide the most viable means
for aggregating species into reasonable ecological guilds
for experimental manipulations, gross food web com-
parisons, and so forth? If there is substantial error in
the estimation of diet fractions (there will always be
some), the diet proportions-based method seems to
perform poorly for trophospecies estimation. But what
lies behind this result? One possibility is that our flow
similarities were too theory laden, in that we had to
estimate the flows, then the proportions g, from allo-
metric relationships. To test this possibility, we per-
formed cluster analyses using OTE-similarity measures
in which only the predator role, not the resource role,
of each species is taken into account. This method was

Sl = reve

where a is the total number of prey species only that
species i and j have in common, b is the number of
species that are prey of species i but not of species j,
and c is the number of species that are prey of species
J but not of species i; and

Spoll J) = — 2222
. I I I /?

where p,, is the proportion of consumption by species j
that comes from species i. Based on the resulting cophe-
netic correlations, topological similarity performed
slightly better than flow similarity (mean correlation =
0.86 and 0.82, respectively). For the clustering method
NMIN, flow similarity performed better, and flow and
topology methods performed essentially the same for
the method ASWC (Table 2). The two clustering meth-
ods that performed better than NMIN for the flow data
(i.e., NMAX and ASBC) had cophenetic correlations
that were only slightly greater when based on topologi-
cal data (magnitude of the difference = 0.04 in each
case).

The differences between the performance of topol-
ogy- and flow-based similarities must derive from the
two differing treatments of weak feeding links. Fig. 7
investigates the influence of weak links on the two
additive OTE similarities (STA, SFA) using the cluster
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Table 2. Cophenetic correlations for 12 different notions of trophic similarity, in which each species’ role as predator only is
taken into account: 2 notions of similarity between OTEs (topological or flow) and 6 notions of similarity between clusters of

OTEs, listed in the first column.

Cluster similarity Topological similarity

Flow similarity Row average

NMAX 094 0.90 092
NMIN 0.76 0.87 0.82
- SL . 0.92 0.72 0.82
CL 0.88 0.78 0.83
ASWC 0.72 0.73 0.73
ASBC 0.96 0.92 0.94
Column average 0.86 0.82

similarity ASBC. In this figure, link threshold is al-
lowed to vary. For each link threshold value, all feeding
links are deleted in cases where the prey represents a
fraction of the predator’s diet less than the link
threshold value. The dotted curve gives, for topological
OTE similarity, the phenetic correlation of the tree
incorporating the link threshold with the original tree
to which no link threshold was applied. The dashed
curve does the same for flow OTE similarity, whereas
the solid curve is the phenetic correlation for each link
threshold between the tree based on topological similar-
ity and the tree based on flow similarity.

The flow similarity (dashed curve) is relatively insen-
sitive to the inclusion or exclusion of rare prey, whereas
the topological similarity (dotted curve) is very sensitive
to rare prey (Fig. 7). As the link threshold defining
“rare prey’” increases, the trees produced by topological
and flow similarities become more alike, but less satis-
factory as expressions of the original trophic structure
in our data (particularly for the topologically based
trees). An almost identical figure is obtained if we
compare the two multiplicative similarities STM and
SFM in this way.

This suggests that, in the Cafio Maraca food web,
rare prey are important in ecological distinctions
among trophospecies. Interestingly, these distinctions
are brought out effectively by the topological, food web
“viewpoint, whereas they are attenuated in a more quan-
titative way based on dietary proportions. In such a
situation, topological similarity is a better basis for
defining trophospecies, provided that rare prey are
carefully included (Fig. 7, dotted curve). However, one

can imagine systems in which the important ecological

distinctions are expressed in common prey, with rare
prey a distraction that would distort topologically
based trophospecies (e.g., for models of energy flow).
Clearly, studies of other highly resolved systems are
needed before general conclusions can be stated with
confidence.

Our study raises the issue: is a trophic generalist’s
influence on the global properties and dynamics of a
food web more diffuse, and therefore less significant,
than that of a specialist that interacts strongly with only
a few species? Or conversely, does the generalist, by
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phenetic correlations

~

virtue of harvesting a greater number of species, have
greater overall influence on the dynamics of the food
web? The resolution of these questions would depend
on a variety of theoretical issues (e.g., donor-control vs
predation models) and additional empirical consider-
ations (e.g., the relative abundances of a species’ preda-
tors, prey, and competitors in the food web).

Additive vs multiplicative integration of consumer
and resource roles

The additive similarity measure tended to yield higher
cophenetic correlations than the multiplicative measure
for integrating species’ roles as consumers and re-
sources (Table 1), and, on average, the additive method
produced larger species pairwise correlations. The Jac-
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Fig. 7. Phenetic correlations vs link threshold with additive
OTE similarity and ASBC cluster similarity: dotted curve,
phenetic correlation between tree with and without threshold,
for topological OTE similarity; dashed curve, phenetic correla-
tion between tree with and without threshold, for flow OTE
similarity; solid curve, phenetic correlation between topologi-
cally based tree and flow based tree, both with link threshold.
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card summation method (e.g., tree T-A-ASBC) tended
to produce aggregations more consistent with intuitive
trophic guilds (see above section “Tree comparisons®)
than the Jaccard product method of estimating node
similarity. This was especially true among the fish
OTEs of the web, whereas results for the non-fish
OTEs (organisms that are represented as resources but
not as consumers in our dataset) are fairly comparable
following the two algorithms. As indicated when we
first introduced the concept, the multiplicative form of
similarity rests on the assumption that each species’
dual roles as consumer and resource are, to a good
approximation, independent. Based on the results of
cophenetic correlation and the comparison of patterns
of species pairwise correlation, this assumption ap-
pears to fail, at least in the Caflo Maraca food web.

Multiplicative similarity emphasizes differences be-
tween species whenever there is zero overlap based on
cither diet or predators (because 0 x value=0). In
contrast, the additive measure yields a value greater
than zero whenever there is at least one shared re-
source in species’ diets or at least one shared predator.
However, if one seeks a very narrow definition of
trophospecies (e.g., all prey and predators are shared,
sensu Pimm et al. 1991), then overlap must be unity
for both diet and shared predators, a condition not
observed in the Cailo Maraca dataset, and one un-
likely to be encountered in nature (Winemiller and
Polis 1996).

Clustering algorithms

As one might expect due to its derivation from first
principles, one of our “natural” cluster similarities,
natural maximum linkage similarity (NMAX), per-
formed well as a basis for defining trophospecies via
hierarchical clustering. However, a standard “ab-
stract” method, average similarity between clusters
(ASBC), also performed well, and yielded trees similar

cjJo the NMAX trees. We do not perceive any clear
argument why this should generally be true. In the
_event that results from the two methods were to confl-
ict, we would be more confident of using the method
derived from first principles, NMAX.

Yet, method ASBC offers certain advantages. For
the Caflo Maraca food web, it yielded somewhat bet-
ter trees in terms of trophic guilds (see above section
“Tree comparisons”). Furthermore, it is readily avail-
able in standard clustering software packages, while
those wanting to use NMAX would need either to
create their own code, or request a copy of our FOR-
TRAN subroutine (We will provide our code to any-
one who wishes to use it; however, the software
provided in standard packages for ASBC will run
much faster). Knowing in advance that the two meth-
ods perform similarly on our data, we took advantage
of the superior execution speed of standard software
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in preparing Fig. 7, which required the computation of
many trees.

Choice of similarity level for trophospecies
aggregation

Our discussion has revolved around the production of
hierarchical classifications, but one more step is re-
quired to obtain trophospecies, namely a choice of
similarity level. To some extent, this will be a subjective
judgement (except in the case of Pimm et al.’s (1991)
strict definition of complete overlap for diet and preda-
tors). The challenge is to find a lower limit for an
acceptable similarity level for trophospecies aggrega-
tion. In other words, one must determine the maximum
level of aggregation that is acceptable given the nature
of the ecological problem to be addressed. One criterion
might be to impose an upper limit on the range of body
sizes that can be tolerated within a trophospecies (this
might be desirable if one were, for instance, going to
construct a population dynamical model around the
trophospecies; Iwasa et al. 1987, 1989). If one were
interested in some particular species or group of species
(as might often be the case in management situations),
one might not wish to merge the taxa of interest with
other taxa into a trophospecies.

Assignment of trophic links

Having defined trophospecies, the next step in con-
structing an aggregated trophic theory is to define
trophic links among them. This requires a nontrivial
decision. If we have two trophospecies for which no
pair of OTEs, one in each of the two trophospecies, is
connected by a feeding link, then it is clear that the two
‘trophospecies should not be connected by a feeding
link. But how many pairs of OTEs in the two trophos-

-.pecies need to be linked before we should consider the
two trophospecies to be linked? The two extreme atti-
tudes correspond precisely to the conventions labeled
maximum linkage and minimum linkage by Martinez

5 (1991), and used by us to define our cluster conventions
NMAX and NMIN (refer to above section on
“Trophic similarity between clusters™): maximum link-
age requires just one pair of linked OTEs, while mini-
mum linkage requires that all pairs be linked. The
criterion of minimum linkage would permit us to clus-
ter very few of the original OTEs in the Caiio Maraca
dataset. Our topic has been the definition of trophospe-
cies, yet our findings have major implications for the
linkage problem. The superiority of method NMAX to
NMIN, at least by the criterion of cophenetic correla-
tion in the context of topological similarity (Table 1),
suggests that of the two extremes, maximum linkage
allows a greater degree of aggregation.
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Conclusions

The quest for trophospecies, aggregations of species
with similar roles in a food web, requires that species
that consume many of the same resources also share
many of the same predators. We evaluated alternative
methods for aggregating the original trophic entities
(mostly species) from a well-documented, aquatic
food web into trophospecies, and we conclude that it
would be difficult to identify trophospecies by the ob-
jective set of criteria used in this study. The greatest
problem may be the limitations of the dataset: some
species had no documented predators, and some con-
sumers were not assigned resource links because these
were not directly documented. In addition, there will
always be a certain amount of error in estimating the
magnitude of trophic links documented from field re-
search. For example, we chose to perform this analy-
sis on the cumulative annual food web for Caiio
Maraca, because it had the most complete record of
resource use and predation. However, this system un-
dergoes major seasonal changes in ambient condi-
tions, primary productivity, and community structure
which greatly influence the food web (Winemiller
1990, 1996). We performed some of the same analyses
on seasonal food webs of Cafio Maraca and found
greater effects from bias due to incomplete data (e.g.,
species with no observed predators). Whereas the cu-
mulative annual web for Caiio Maraca provides one
of the most extensive quantitative descriptions of a
food web, it is not a complete and accurate descrip-
tion of this diverse, complex, and dynamic system.

The question remains, that given the error inherent
in any empirical estimation of a food web, can spe-
cies be aggregated into trophospecies using the best
objective criteria? In terms of estimating species
trophic similarity, the results of cophenetic correlation
revealed a very slight advantage for a flow-based
‘analysis, whereas patterns of species pairwise correla-
tion yielded equivocal results. The additive method
for integrating species’ similarities based on their dual
roles as consumers of resources and as prey of other
predators was generally superior to the multiplicative
method. The clustering algorithms that produced the
most ecologically sensible trophic groupings were av-
erage clustering (ASBC) and maximum linkage
(NMAX). The maximum linkage convention (in
which a link is included if any pair of OTEs, one in
each trophospecies, are linked) produced better aggre-
gations than the minimum linkage convention (in
which a link is included if every OTE pair, one in
each trophospecies, are linked). The choice of similar-
ity level for defining trophospecies was completely un-
resolved for this dataset, and more research of this
kind using other datasets is needed to further evalu-
ate objective criteria for aggregation into trophospe-
cies.
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