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Food Webs: What Can They Tell Us About the World?
Kirk O. Winemiller and Gary A. Polis

This book unites diverse approaches from
theoretical ecology and empirical research in
systems ranging from soil fauna to oceans.
Major philosophical and methodological dif-
ferences are expected from such a heteroge-
neous group of ecologists; indeed, one might
be amazed by the establishment of a substan-
tial common basis for discussion. Food webs
provide this basis. Much recent ecological
literature is cast within a food-web frame-
work, including studies of: (1) Habitat heter-
ogeneity and the regulation of community
structure (e.g., Lubchenco (1983), Kareiva
(1986), Moore and Hunt (1988), and Moore
et al. (1989b)); (2) environmental change
through time and community structure and
function (Menge and Sutherland, 1976;
Winemiller, 1990; Schoenly and Cohen,
1991); (3) productivity gradients and commu-
nity structure (Oksanen et al., 1981; Persson
et al., 1988, 1991); (4) direct and indirect
cascading effects of predation on community
structure (Paine, 1980; Power et al., 1985;
Carpenter et al., 1987 Kerfoot, 1987
Yodzis, 1988; Schoener, 1989; Spiller and
Schoener, 1990; Turner and Mittelbach,
1990); (5) intraguild predation (Polis et al.,
1989; Oksanen, 1990; Polis and Holt, 1992);
(6) indirect mutualism (Vandermeer et al.,
1985); (7) apparent competition (Holt, 1984;
Holt and Kotler, 1987); and (8) ecosystem
stability and nutrient dynamics (DeAngelis,
1992). Some population interactions (e.g.,
competition, predation) cannot be fuilly eval-
vated outside of a food-web context because
their outcomes can be modified by other
members of the web. Aquatic ecologists have

achieved notable success by studying the in-
teractions between top-down (consumption)
and bottom-up (production) factors in the reg-
ulation of community structure (Carpenter,
1988; McQueen et al., 1989; Power, 1990a,
1990b; Vanni and Findlay, 1990; Vanni et
al., 1990; Persson et al., this volume). Most
food-web studies have viewed consumption
exclusively within pathways derived from
primary production, and only recently has the
major role of detritus in ecosystem structure
and function received much serious attention
(Cousins, 1980; Rich, 1984; Coleman et al.,
1988; Moore et al., 1989a; Polis and Hurd,
this volume; Porter, this volume). There cur-
rently is little agreement on how to best char-
acterize the role of detritus (itself a heteroge-
peous unit) in food webs (Rich, 1984;
Cousins, 1985; Winemiller, 1990; Polis,
1991). In addition, food webs are the arenas
for several major theoretical debates, such as
paradigms associating complexity with sta-
bility (MacArthur, 1972; May, 1975, 1983;
Pimm, 1982; Abrams and Taber, 1982) and
hypotheses relating the effects of size-depen-
dent predation to community structure
(Brooks and Dodson, 1965; Warren and Law-
ton, 1987; Cohen and Newman, 1988).

The adoption of food web paradigms in
applied research has yielded important in-
sights. A number of problems in resource
management (¢.g., pest control, environmen-
tal contamination, fisheries management,
bioremediation of lakes) require characteriza-
tion of food web structure as an early step
in formulating management solutions. The
fundamental challenge of understanding the
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regulation of populations and regional biodi-
versity usually requires basic knowledge of
community structure and population interac-
tions. For Iexample, pest control in agroeco-
systems may be influenced by the response
of predators to nontarget prey, or by predator-
predator interference (Polis and Holt, 1992;
Rosenheim et al., 1993; Ehler, this volume).
Fisheries management requires predicting the
responses of both predators and prey to har-
vest and other manipulations (Parsons,
1992). As demonstrated in several aforemen-
tioned aquatic studies, bioremediation of
lakes may be either confounded or aided by
the influence of indirect interactions in food
webs. To a major extent, our current inability
to predict responses of communities to exotic
introductions is founded in poor understand-
ing of food web dynamics (Lasenby et al.,
1986; Spencer et al., 1991; Kaufman, 1992).
The same is true of muitispecies fisheries,
especially in diverse marine and tropical
communities.

Background

We define a food web as a network of con-
sumer-resource interactions among a group
of organisms, populations, or aggregate tro-
phic units. Pimm (1982) broadened the defi-
nition for food webs as “diagrams depicting
which species in a community interact,”
which allows the explicit inclusion of a vari-
ety of population interactions as food web
components, e.g., horizontal (competitive)
interactions and mutualisms. Cohen and
Newman (1985) defined a food web as “a set
of different kinds of organisms and a relation
that shows the kinds of organisms, if any,
that each kind of organism in the set eats.”
Although this latter definition is specific with
regard to the class of biological interaction,
the biological units are defined only vaguely
as “kinds of organisms.”

While the units and domain of a given food
web can be debated, the acquisition of energy
and matter plus the avoidance of death or
damage by consumption are obviously vital
for all organisms. With few exceptions (fos-
silization, mineralization), the ultimate fate
of organisms is some form of consumption
by and assimilation into tissues of other or-
ganisms, be they metazoans or microbes. The
structure, dynamics, and spatial relationships

of the tropic networks derived from this basic
observation are certain to affect the distribu-
tion and abundance of organisms in very fun-
damental ways.

Over 45 years ago, Hutchinson (1948) rec-
ognized the parallel development of two sep-
arate approaches for the study of trophic
networks: the biogeochemical and the bio-
demographic. O’Neill et al., (1986) saw
this dichotomy of approaches in the current
process-functional and population-dynamic
schools of ecosystem study. The food web
is the basic unit of study for both schools.
Credited with the first formal conceptualiza-
tion and quantitative description of energetic
processes within food webs, ~Lindeman
(1942) paved the way for the development
of systems ecology as a means to investigate
higher-order biological processes. Systems
ecology traditionally emphasized the curren-
cies of natural economies (matter and energy)
and tended to aggregate evolutionary units
(organisms and populations), thus trading off
the ability to study hierarchical interactions
ranging from genetic to ecosystem levels
(O’Neill et al., 1986; Allen and O’Neill,
1991).

By stressing the importance of physical
principles, such as the laws of thermodynam-
ics in relation to ecological efficiency, sys-
tems ecology tends to downplay the role of
natural selection and stochastic environmen-
tal influences on population dynamics and
community properties (Loehle and Pech-
mann, 1988; Oksanen, 1988). From the per-
spective of individual behavior, the evolution
of predator foraging will increase ecological
efficiency, while the evolution of prey escape
tactics will lower ecological efficiency. Even
in the short term, adaptive foraging greatly
influences food web dynamics in Lotka-
Volterra-based models (Abrams, this vol-
ume). Food web paradigms deal with net-
work complexity in a holistic fashion, yet
differ from the systems approach by retaining
much potential for traditional demographic
and evolutionary interpretations. Food webs
also have emergent properties that are derived
from, but not shared by, their constituent
units (Hall and Raffaelli, 1993).

Types of Food Webs

Three basic approaches can be identified in
the investigation of community trophic net-
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works (Paine, 1980). A topological or de-
scriptive web is a static description of feeding
links, either observed or estimated, among
species or guilds. A flow or bioenergetic web
quantifies the transport of energy and matter,
via predation, among species or guilds. An
interaction or functional web identifies the
species and feeding links that are most influ-
ential in the dynamics of community compo-
sition and structure.

Topological webs are static networks of
feeding interactions recorded as either pres-
ent or absent (binary links) in a matrix of
n X n species that pairs potential predators
(column entries) with potential prey (row en-
tries). The community matrix of directed
feeding interactions can be converted into a
food web diagram containing vertices (nodes)
connected by lines to indicate feeding links
(Cohen, 1978).

The process-functional approach quanti-
fies the flow of energy and matter through
ecosystems and seeks to elucidate the biologi-
cal processes that regulate these flows (Odum
and Odum, 1976; Ulanowicz, 1986;
DeAngelis, 1992). The flow of energy and
matter, in turn, influences the dynamics of
populations and communities (DeAngelis,
1992). Yet, flow webs are not sufficient to
predict the dynamics of communities, be-

‘cause energy and biomass flow are them-
selves functions of interactions among popu-
lations with the food web. The dynamic
importance of a particular species or feeding
link cannot be inferred directly from measure-
ments of energy transfer or diet composition
(Paine, 1988, 1992; Polis, 1991, 1994; Polis
and Strong, in press). This major limitation
holds for both population-dynamic and pro-
cess-functional food webs. Without experi-
mentation, one cannot determine a priori
which major feeding links exert strong demo-
graphic effects (Paine, 1980, 1988, 1992;
Dayton, 1985; Polis et al., 1989). If some
other factor limits population growth, then
an apparent strong link (in terms of dietary
biomass percentages, or kilocalories of en-
ergy transferred) might have little effect on
population dynamics and community struc-
ture (Dayton, 1985; Hall et al., 1990; Polis
and Strong, in press; Raffaelli and Hall, this
volume).

Experimental manipulations of food webs
can identify species and feeding links that
most influence population and community

dynamics. These key species and strong links
are joined together in an interaction web
(Paine, 1992). The initial process of choosing
species and interactions to experimentally
manipulate is somewhat subjective and often
based on imperfect knowledge of food web
structure or function, ideally in the context
of a keen appreciation of the natural history
of the system. As researchers learn more,
some community elements are deemed rela-
tively unimportant and others are subjected
to further experimentation (Paine, 1992; Raf-
faelli and Hall, 1992). Eventually, the com-
munity is condensed into an interaction web,
a subset of species that most influence com-
munity biomass and diversity. For example,
this approach has been adopted by experi-
mental marine and aquatic ecologists to un-
derstand processes influencing community
trophic cascades (Paine, 1980; Dayton, 1985;
Power et al., 1985; Menge and Sutherland,
1987; Carpenter and Kitchell, 1988; Power,
1990a). Yet, even field experimentation is
not without limitations: variables are often
difficult to control, experimental timescales
may be inappropriate, initial conditions and
the spatial scale and methods of isolating sys-
tems for study influence outcomes, and indi-
rect interactions can compromise the ability
to infer causation form direct interactions
(Bradley, 1983; Bender et al., 1984; Yodzis,
1988; Raffaelli and Hall, 1992; Bengtsson et
al., this volume).

Generalizations From Toplogical Webs

This book contains little treatment of toplogi-
cal web comparisons. The comparison of
static topological food webs has stimulated
theory and empirical tests; these are summa-
rized by Lawton (1989), Cohen et al. (1990),
Pimm et al. (1991), Pimm (1992), and Hall
and Raffaelli (1993) (but see Polis 1991).
Such analyses have produced what has come
to be known as food web theory, models that
attempt to explain the general trends in web
topology. Published webs were gathered by
Cohen (1978), Pimm (1980, 1982), Briand
(1983b), Sugihara et al. (1989), and Cohen
et al. (1990) for quantitative analysis of their
properties. Abstracted generalizations in-
clude: (1) Network linkage density does not
vary with the number of species (Rejmanek
and Stary, 1979; Pimm, 1980; Yodzis, 1980;
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Auerbach, 1984; Briand and Coben, 1984,
Cohen et al., 1985); (2) food chains are usu-
ally limited to three or four trophic levels
(Pimm, 1982; Cohen et al., 1986; Newman
and Colien, 1986; Briand and Cohen, 1987);
(3) ratios of predator to prey species in food
webs are roughly constant at about 0.8-1.0
(Briand and Cohen, 1984; Cohen et al., 1985;
Jeffries and Lawton, 1985); (4) the fraction
of species at the base, middle, and top of
webs does not vary with species number (Bri-
and and Cohen, 1984; Cohen and Briand,
1984; Cohen et al., 1990); and (5) the fre-
quency of omnivory in nature is less than
expected by chance (Pimm, 1982; Pimm and
Kitching, 1987).

Although the analysis of topological webs
has stimulated new areas of inquiry (Peters,
1988; Lawton, 1989; Pimm et al., 1991),
there is major concern that the empirical data
that are the foundations for generalizations
are terribly inappropriate (Glasser, 1983;
May, 1983; Paine, 1983, 1988; Taylor, 1984;
Pimm and Kitching, 1988; Sprules and Bow-
erman, 1988; Lawton, 1989; Schoener, 1989;
Winemiller, 1989, 1990; Cohen et al., 1990;
Martinez, 1991a, 1991b; Pimm et al., 1991;
Polis, 1991, 1994; Hall and Raffaelli, 1993;
Yodzis, 1993). For example, early web dia-
grams contain far too few species, too few
feeding links, too few omnivores, too few
loops (A eats B, B eats C, C eats A), and too
little cannibalism (Winemiller, 1990; Polis,
1991). Limitations of these traditional data
sets stem from large variation in field meth-
ods, techniques of empirical analysis, defini-
tions of operational units, and criteria for web
construction. Some have argued that compar-
isons would be more valid among sets of
webs constructed using the same criteria
(Winemiller, 1990; Pimm et al., 1991,
Martinez, 1991a, 1993; Goldwasser and
Roughgarden, 1993). A handful of more de-
tailed (yet vastly incomplete) webs have been
described recently, and many results are in-
consistent with earlier generalizations based
on previous catalogs of topological webs
(Hildrew et al., 1985; Warren, 1989; Wine-
miller, 1989, 1990; Hall and Raffaelli, 1991;
Martinez, 1991a; Polis, 1991; Schoenly and
Cohen, 1991; Goldwasser and Roughgarden,
1993).

Many generalizations based on compari-
sons of simple webs culled form the literature

appear to have little or no biological basis
(Winemiller, 1989, 1990; Polis, 1991,
1994). The statistical properties of these web
diagrams may bé functions more of human
idiosyncracies than attributes of the natural
world (Paine, 1983, 1988; Winemiller, 1989;
Martinez, 1991a). When the primary objec-
tive was the description of general commu-
nity feeding relationships, most illustrators
drew fewer connections as diversity in-
creased. In addition, illustrators tended to
aggregate Imore Species into each node in
communities that contained more species.
The early web diagrams were created to high-
light the trophic roles of certain taxa, and
biologists frequently lumped species into ag-
gregate units to a greater degree near the base
of web (Pimm, 1982; Paine, 1988, Polis,
1991).

Some of the metrics used in comparisons
were confounded by attributes such as web
size (defined as species richness). For
example, Pimm’s (1982) index of compart-
mentation is confounded by connectance
(Winemiller, 1990), and comparisons of
connectance between different systems can
be confounded by web size (Bengtsson,
1994). The seemingly constant ratio of preda-
tors to prey in food webs (reported values
between 0.76 and 1.1) has been shown to be
an artifact of double counting species in food
webs (Closs et al., 1993). Greater Iumping
of taxa into trophospecies at the bottom of
reported webs tends to increase this ratio. In
hindsight, this realization might have circum-
vented the search for the biological implica-
tions of constant P/P ratios (Jefferies and
Lawton, 1985; Mithen and Lawton, 198S;
Cohen and Newman, 1985; Warren and Law-
ton, 1987).

Scale Effects

Defining the limits of natural ecological com-
munities is a difficult and, in practice, often
subjective or arbitrary exercise. Various sta-
tistical methods have been employed to iden-
tify local communities as spatially segregated
species assemblages (e.g., Gauch (1982) and
Holling (1992)). Frequently, plants and ani-
mals are grouped into communities or species
assemblages based on their patterns of co-
occurrence on fairly broad scales of spatial
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heterogeneity. In practice, this manner of
grouping is largely subjective, although fre-
quently rather obvious as for species assem-
blages confined by discrete habitat bound-
aries, like stream, lake, and sand dune
communities. Cousins (this volume) suggests
that community webs be delimited spatially
by the home ranges or ambits of their top
predators.

No community, not even one contained by
discrete habitat boundaries, is entirely with-
out interaction with, or influence from, adja-
cent habitats and species assemblages (Holt,
1993; Polis et al., this volume). For example,
stream ecosystems are strongly influenced by
adjacent terrestrial habitats (Mulhclland et
al., 1985; Junk et al., 1989). Even at fairly
small spatial scales, terrestrial and fluvial sys-
tems interact, although many insights can be
gained by focusing attention on either the
terrestrial or aquatic unit separately. In many
cases, knowledge of transport processes
across habitat boundaries is essential for un-
derstanding the dynamics of local popula-
tions and communities (Lewin, 1986; Pul-
liam, 1988; Dunning et al., 1992; Robinson
et al., 1992; Polis and Hurd, this volume;
Polis et al., this volume). Consequently, no
community web can be considered a discrete
natural unit. This is not to imply that ecolo-
gists should not seek to define major inter-
active units by the most objective of the
means at their disposal. Yet, the subjective
definition of communities poses particularly
acute problems for comparative numerical
analyses of web features.

Despite the difficulties inherent in defining
the boundaries of natural communities, large
webs can be divided into subwebs in nonarbi-
trary ways. A web comprising a single con-
sumer species and all its prey is actually a
subweb within a larger network. Following
Cohen (1978), a sink subweb consists of all
the prey taken by a predator plus all prey
consumed by the prey of this designated top
predator, and so on. Alternatively, source
subwebs include a set of one or more basal
species (usually, but not necessarily, plants),
their consumers, and predators of their con-
sumers (Cohen, 1978).

Great variation also is seen in the definition
of nodes. Polis (1991) discussed problems
associated with such variation in published
food webs. Nodes are usually composed of

lumped species populations referred to as #ro-
phospecies (Yodzis, 1988) or simply species
(Cohen, 1978; Pimm, 1980, 1982; Briand,
1983a, 1983b; Auerbach, 1984; Cohen and
Newman, 1985). According to Pimm et al.
(1991), trophospecies are sets of organisms
with identical prey species and identical pred-
ators, within the resolution limits of the
study. Unless data are highly aggregated to
begin with, it is highly unlikely that any bio-
logical species could be grouped in this man-
ner. Indeed, the trophospecies concept ig-
nores two decades of search for limiting
similarity, sensu MacArthur and Levins
(1967). To resolve trophic entities in a more
specific way, Pimm and Rice (1987) and
Martinez (1991a) proposed splitting biologi-
cal species into separate web nodes based on
distinct life cycle stages. This approach offers
considerable potential to model the conse-
quences of ontogenetic niche shifts for a tar-
get species within the context of community
interactions, but makes the use of lumped
trophospecies in other parts of the web even
more problematic.

Temporal and Spatial Variation

Most ecological communities do not occur
in stable environments, and some (perhaps
most) only rarely or intermittently experience
strong density dependence or exhibit equilib-
rium population dynamics (Wiens, 1977,
1984; Schoener, 1982; Strong, 1986; Dunson
and Travis, 1991). Furthermore, few preda-
tors appear to eat prey in constant ratios over
time during their entire life cycles. Aquatic
organisms, in particular, reveal much ontoge-
netic, size-dependent predation (Brooks and
Dodson, 1965; Werner and Gilliam, 1984).
Diet often shifts in response to seasonal
changes in the availability of preferred food
resources. For example in the Venezuelan
llanos, loricariid catfishes consume aquatic
primary production mostly as living algae
during the wet season and as dead mac-
rophyte tissues (detritus) during the dry sea-
son (Winemiller, 1990, this volume). Such
seasonal variation in fish diet is more the
norm than the exception (Werner and Gil-
liam, 1984), even at less seasonal locations
in the tropics (McKaye and Marsh, 1983;
Winemiller, 1990). Similar changes also
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characterize terrestrial consumers (Polis
1991). Price (1992) discussed the effects of
alternative resources at the base of webs on
the structure of plant-herbivore-parasitoid
webs. He noted that “even a small difference
between plant resources can have an enor-
mous impact on food web structure.”

Despite widespread recognition of the tran-
sitory nature of natural habitats and trophic
interactions (Thompson, 1988), surprisingly
little attention has been given to variation in
the time intervals used to estimate food web
structure. A web based on large amounts of
data collected over an annual cycle (a cumula-
tive web) is more complex than a web de-
scribing the same system based on data col-
lected during a short interval, say a week
or several months (Kitching, 1987; Warren,
1989, 1990; Winemiller, 1990; Schoenly and
Cohen, 1991). The cumulative web is a more
complete and accurate portrayal of the sum
of all trophic interactions in the network, yet
it may not be the most appropriate unit for
analysis. Because trophic interactions always
exhibit some degree of temporal dynamics,
webs estimated over shorter time intervals
could provide a basis to evaluate within-sys-
tem temporal changes in web properties
(Winemiller, 1990; Schoenly and Cohen,
1991). In practice, however, large samples
are needed to minimize omissions of feeding
links due to the hazards of sampling error
for data collected over relatively short time
intervals. For some communities, the sam-
pling design and effort will require compro-
mise between the many benefits associated
with a large sample size and the negative
impact that collecting without replacement
might exert on normal ecosystem perfor-
mance.

Web Structure and Population Dynamics

What are some potential implications of vari-
ance in densities of species components on
food web structure and function? Consider a
species whose diet consists of large fractions
of several other species in the community. If
the species is extremely rare, its overall effect
on the system may be trivial. Conversely,
a functionally significant prey species could
appear rare if it is kept in check by strong
interactions with predators (Paine, 1980).

Whether or not the rare species is involved
in significant food web interactions may de-
pend on whether the perspective is by preda-
tors from above, or by prey from below (Po-
lis, 1991). Furthermore, a superabundant
species exhibiting numerous weak interac-
tions could be important in food web dynam-
ics. There are few means to determine a pri-
ori which rare species might be excluded
from analyses, and probably only experi-
ments, be they manipulative or natural, can
tell us this for certain.

Web structure depends upon current densi-
ties of predators and prey, which, in turn, are
derived from rates of biomass accumulation,
population growth rates, and predation rates
during preceeding intervals. In discussing the
implications of population dynamics on web
properties, Power (1990b) noted how the eco-
logical significance of an observed link is
Jargely determined by the functional and nu-
merical responses of predators to prey. Mod-
els of ratio-dependent predation (where the
functional response depends on the ratio of
predator to prey rather than prey density)
yield dynamics quite different from simula-
tions based on the familiar Holling (1959,
1966) predation model (Arditi and Ginzburg,
1989; Arditi and Saiah, 1992; Arditi and Mi-
chalski, this volume). Berryman (1992) con-
cluded that the behavior of Lotka-Volterra
predation models, with either logistic modi-
fications to predator and prey or with ratio-
dependent functional responses, have greater
biological realism than models with classical
functional responses. To achieve even mod-
est coupling of food web structure with dy-
namics requires not only knowledge of spe-
cies composition and population interactions
(i.e., topology and flow), but also population
densities and growth dynamics (Bengtsson et
al., this volume). .

Food Webs in Relation to
Abiotic Factors

Biotic factors in the form of predator/prey
interactions are explicit in food webs. Much
theoretical and empirical work documents the
influence of predation on demographics, be-
havior, and evolution of both consumers and
prey (e.g., Hespenheide (1975), Zaret
(1980), Wemer et al. (1983), Ryan (1985),
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Feder and Lauder (1986), Kerfoot and Sih
(1987), Polis et al. (1989), and Turner and
Mittelbach (1990)). Yet, not all populations
or communities are regulated solely by the
dynamics of observed predator/prey or com-
petitive interactions (Menge and Sutherland,
1987; Dunning and Travis, 1991; Pimm,
1991; Hunter and Price, 1992; Price, 1992;
Power et al., this volume). Paine (1980,
1983) provided convincing arguments and
empirical evidence against an emphasis on
the configuration of trophic links (network
connectance) at the expense of other factors.
Static topological webs can be misleading
in light of results from experimental mani-
pulations (Paine 1980, 1983) and natural ex-
periments (Schoener, 1989). To make the
situation more difficult, experimental
manipulations can yield wrong interpreta-
tions given the complicated dynamics of
multispecies interactive networks (Bender et
al., 1984; Yodzis, 1988, Abrams, this
volume).

Abiotic factors such as the availability of
nest sites or refuges, density-independent
mortality due to climatic factors, and nutrient
availability can limit populations under ap-
propriate circumstances. How does one rec-
ognize when such factors periodically over-
ride density-dependent dynamics within food
webs? Can we recognize a web structured by
a hurricane or fire, and how would it differ
from the web of a mature community struc-
tured by density-dependent biotic interac-
tions? Several features of aquatic webs are
derived, either directly or indirectly, from
seasonal changes in the physical environment
(Winemiller, 1990, this volume; Power et
al., this volume; Rosemond, this volume).
Despite considerable theoretical interest in
the relationship between web structure and
community stability (May, 1975; DeAngelis,
1975; Pimm, 1979; Yodzis, 1981a; King and
Pimm, 1983; Post and Pimm, 1983; Has-
tings, 1988), the direct effect of abiotic
factors on food webs remains relatively unex-
plored. Menge and Sutherland (1987) ob-
tained experimental evidence from marine in-
tertidal communities that supports the view
that abiotic environmental factors and preda-
tion suppress competition and thereby regu-
late populations to varying degrees de-
pending on their relative position within the
trophic continuum. This problem takes on

even greater importance when anthropogenic
disturbances are added to the list of natural
ecosystem perturbations (Crowder et al., this
volume). Ulanowicz’s (this volume) flow
model suggests that dynamic food web prop-
erties change in response to stress.

Early discussions of community diversity
and stability assumed cybernetic control. As
previously noted, frequently this assumption
is undoubtedly false. The intermediate distur-
bance model predicts highest species diver-
sity for communities that experience interme-
diate levels of disturbance (Connell, 1978;
Huston, 1979; Petraitis et al., 1989). Biotic
factors, some of which may not be directly
related to trophic interactions, can also vio-
late the assumption of density-dependent
feedback in food webs. Consider, for exam-
ple, species that pollinate (Gilbert, 1977). It
the web is depicted as a network of direct
trophic interactions, then pollinators exert a
direct negative influence on their host plants
in terms of their consumption of energy and
matter that might otherwise have been chan-
neled to other physiological functions. Yet
clearly, pollinating vectors represent a net
positive effect on their hosts. In this specific
case, some links within the trophic network
would portray a direct effect that is opposite
in sign to the real effect. The same argument
could be made for the roles of seed dispensers
and some other kinds of mutualists. Strong
mutualistic interactions (e.g., Mullerian
mimicry, habitat or refuge facilitation) could
override the net negative effect of direct tro-
phic links.

In any large web, some feeding relation-
ships will exert disproportionately great im-
pact on ecosystems. Consider, for example,
the major role that African elephants or bea-
vers play as architects of their habitats. In
contrast, consider the food chain of leaf cutter
ants (Afta sp.)-fungi-vegetation (= three
nodes, two links). Fungi are a crucial food
web element in terms of the physiological
ecology of leaf cutter ants. By itself, Aua
canpot extract nutrition from plants, and
therefore depend upon its association with
fungi. If leaf cutters were suddenly to evolve
their own biochemical capacity to digest and
assimilate plants directly, how would the
elimination of the fungus (one node, one link)
affect the overall food web? The idiosyncratic
influence of species on web structure and
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function is highlighted by Morin and Lawlor,
Power et al., Rosemond, and Strong et al.
in this volume.

Whether jor not they elect to deal with it
analytically, most ecologists are keenly
aware of the role that historical biogeography
plays in setting the stage for contemporary
ecological interactions. Yet few methodolo-
gies have been developed to identify or adjust
. for the influence of historical constraints
(Endler, 1982; Ricklefs, 1987). The influ-
ence of historical factors (invasions, local
extinctions, succession, assembly rules) on
food web features has been investigated
from both theoretically and experimentally
(Yodzis, 1981b, 1984; Post and Pimm, 1983,

Drake, 1990, 1991; Holt, this volume), but

only superficially based on natural communi-
ties (Beaver, 1983; Kitching, 1983, 1987,
Winemiller, 1990). Priority effects in com-
munity assembly can greatly influence com-
munity dynamics and structure (Drake, 1991;
Holt, this volume). Moreover, the influence
of alternative life-history strategies on food
web structure and function has scarcely been
addressed (Schoenly and Cohen, 1991; Wine-
miller, this volume). For example, the rela-
tive impact of a strong feeding link on an
opportunistic (r-selected) prey population is
certainly less than the same level of interac-
tion with a relatively K-selected prey with a
low intrinsic rate of natural increase.

Indirect Interactions Implied From
Direct Predator-Prey Interactions

Although food webs are composed of direct
predator-prey interactions, their structure
provides opportunities to study population
and nutrient dynamics across multiple indi-
rect pathways. Quantitative analysis of web
properties and dynamics is facilitated by the
fact that web diagrams and resource matrices
are directly interchangeable. Several meth-
ods have already been employed, including
loop analysis (Lane and Levins, 1977; Lane,
1986), network analysis (Patten, 1982, 1991,
Higashi and Burns, 1991; Gaedke et al., this
volume; Ulanowicz, this volume), and stabil-
ity analysis of model webs (Pimm, 1980;
Yodzis, 1981a, 1988; Pimm and Rice, 1987,
DeRuiter et al., this volume; Yodzis, this

volume). Coincident with the development
network analysis has been the advancement
of models based soley on direct population
interactions. Hastings’ (this volume; Has-
tings and Powell, 1991; McCann and Yodzis,
1994) model of chaos based on direct food
web interactions among just three species
suggests that dynamics of real food webs may
be considerably more difficult to predict than
was believed based on results from analyses
of complex networks.

A growing body of empirical evidence
demonstrates a variety of indirect effects me-
diated through networks of direct trophic in-
teractions (reviewed by Abrams et al. and
Persson et al. in this volume). With as few
as three species arranged in three discrete
trophic levels, direct predator-prey interac-
tions give rise to indirect vertical interactions
among species at nonadjacent levels. Indirect
horizontal (competitive) interactions can
arise in a simple web consisting of two preda-
tors that share two prey. Miller and Kerfoot
(1987) distinguished three types of indirect
effects: trophic linkage effects (e.g., species
A affects C via direct effect on B), behavioral
effects (species A affects the behavior of C
due to the presence of B), and chemical ef-
fects (species A chemically affects C due to
influence of B). Apparent competition (Holt,
1977, 1985; Abrams, 1987) and indirect mu-
tualism (Addicott, 1984; Dungan, 1987) are
other kinds of potential indirect interactions.
Prospects and implications of increased un-
derstanding of indirect effects within trophic
networks excite theoreticians and holistically
oriented empiricists (Vandemeer, 1980; Pi-
anka, 1987) and, to some degree, frustrate
experimentalists seeking predictable re-
sponses from units embedded within complex
networks (Bender et al., 1984; Yodzis,
1988). If indirect effects prove to be of uni-
versal importance, will it imply that field
ecologists, whether comparative or experi-
mental, must evaluate population phenomena
always within the context of the entire com-
mupity matrix (Bender et al., 1984; Tilman,
1987; Berryman, 1993)? Some experimental
results have shown that populations respond
to only a single factor, despite the complexity
of the webs in which they are embedded
(e.g., Morris (1992)).

Exploitation competition is by definition



an indirect interaction mediated by resource
depression due to consumption. Cohen
(1978) illustrated the potential to study re-
source overlap in food webs composed solely
of predator-prey links. Sugihara (1983, 1984)
also used a graphical analysis to explore pat-
terns of species packing in food webs. The
limitations of the early food web data com-
piled from the literature were already dis-
cussed. Given that competition and guild
~ structure have been examined more directly
_ with greater precision by other means for a
number of years, the utility of these exercises
seems questionable. Many have proposed us-
ing guilds, rather than food webs, as the focal
units for detailed studies of competition.
Studies of community guild structure can,
but need not, involve most of the community
web in the numerical analysis (Winemiller
and Pianka, 1990). Trade-offs between quan-
titative precision, spatiotemporal scale, and
taxonomic inclusiveness will determine the
extent that data for guild analysis and data
from corresponding food webs will overlap.
The primary utility of a holistic food web
approach is the generation of novel insights
from information that integrates with other
kinds of information gained from lower or
~higher levels of biological organization. We
suggest that food webs not be used to reinvent
phenomena that are fairly well understood,
or more approachable, from other levels of
organization. .

These observations might suggest to some
that any holistic approach to multispecies in-
teractions must incorporate the net effects of
each species on every other species in the
system (i.e., the community matrix concept,
Levins (1968)), as opposed to modeling only
trophic relationships. Ultimately, the theoret-

~ical constructs of community ecology must
_ be approachable operationally and amenable
to empirical tests (Peters, 1988). In practice,
it will never be possible to estimate the net
effect of all forms of species interactions si-
multaneously for every element of a commu-
nity matrix. In effect, an idealized commu-
nity matrix could be considered one of the
major goals of community ecology as a pre-

food web probably comes as close as any-
thing to a holistic description of community
interactions.

dictive science (Patten, 1991). Currently, the.
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Community Stability and Complexity

Although they now appear in several intro-
ductory ecology texts (e.g., Kikkawa (1986),
Begon et al. (1990), Ricklefs (1990), and
Smith (1992)), some food web generaliza-
tions have created controversy. At the center
of one controversy is May’s (1971, 1972,
1975) formula for Lyapunov stability in pa-
rameter space for community matrices,
b(SC)l/2 < 1 (where b is the average magni-
tude of interspecific interactions, S is species
richness, and C is network connectance).
May proposed that network connectance
should decrease as the number of species in
real community increases (but see method-
ological objections raised by DeAngelis
(1975), Lawlor (1978), Newman and Cohen
(1984), Law and Blackford (1992), and Hay-
don (1994)). This resulted in the quest to
describe the relationship CS in nature (re-
viewed by Cohen et al. (1990)). Rejmanek
and Stary (1979) were among the first to pro-
pose that § and C exhibit a hyperbolic inverse
relationship (CS = constant) based on exami-
nation of real food webs. Later comparisons
based on compiled web diagrams corrobo-
rated the claim (Yodzis, 1980; Pimm, 1982).
Meanwhile, some ecologists argued for
greater examination of b, since at any given
moment S and C are fixed for natural systems.
Yet, many have proposed that CS constancy
is an artifact of systematic biases in published
web illustrations (Auerbach, 1984; Paine,
1988; Winemiller, 1989; Warren, 1990; Mar-
tinez, 1991b), and CS constancy has not been
supported by analyses of mew webs con-

‘taining greater taxonomic resolution and

more objective identification of trophic links
(Hildrew et al., 1985; Warren, 1990; Wine-
miller, 1989, 1990; Martinez, 1991a, 1991b).

Generalizations based on comparative
analyses of published webs have been re-
viewed and promoted, often with apologies
for the limitations of empirical data gathered
by others (e.g., Sugihara et al. (1989), Cohen
et al. (1990), and Pimm et al. (1991)). Great
caution is urged in the acceptange of results
based on comparisons of highly heteroge-
neous, simplified, and unevenly aggregated
food webs culled from the literature (Paine,
1983, 1988; Winemiller, 1990; Polis, 1991).
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Among the numerous food web properties,
network linkage density and connectance
have received the most attention. In terms of
its potential for unique contributions from a
holistic ecological macrodescriptor, con-
nectance is perhaps among the least relevant
of web features (Paine, 1983). In essence,
network connectance is equivalent to a highly
aggregate measure of average diet breadth
among community members (Warren, 1990;
Winemiller, 1990). The evolution of niche

width is an exciting but fairly old topic, and

one that might be pursued more profitably
at lower levels of organization that can be
characterized more completely (e.g., popula-
tions or guilds with detailed estimates of con-
sumption and ratios of supply and demand).
At the very least, framing the problem of
niche width within a holistic food web con-
text requires a dynamic model in one form or
another (Pimm, 1992; Cohen and Newman,
1988; Burns et al., 1991; Patten, 1991).

Determinants of Web Structure

Lawton (1989) identified at least six kinds of
models used to explain patterns observed in
empirical webs: (1) Energetic constraints
(Odum, 1969); (2) dynamic predator-prey
models (Cohen and Newman, 1988); (3) dy-
namic donor-control models (Pimm, 1982);
(4) static assembly models (Yodzis, 1981b,
1984); (5) the static cascade model (Cohen
and Newman, 1985); and (6) natural history
constraints (Warren and Lawton, 1987). Hy-
brid approaches that combine two of the
above models exist, including a dynamic
predator-prey cascade model (Cohen et al.,
1990) and a dynamic assembly model (Law
and Blackford, 1992). Warren and Lawton
(1987) and Warren (1990) offered mechanis-
tic explanations of food web patterns based
on morphological and functional constraints
of body size and feeding mechanisms (see
also Hairston and Hairston (1993)). Cousins
(1985, 1987) contrasted historical develop-
ments of size-based versus energetics-based
interpretations of community trophic struc-
ture. Currently, neither the empirical data-
base nor actual knowledge of dynamical ram-
ifications of these alternative models appear
sufficient to permit a synthesis relating cause
to effect at the level of whole communities

(Lawton, 1989). A systematic evaluation of
alternative hypothesis of causation for ob-
served food web properties might begin with
natural history constraints (involving body
size, foraging behavior, life history, etc.) and
work up the hierarchy of organization and
abstraction toward mechanisms such as eco-
system energetics.

Food Web Research a Decade Later:
A Comparison of Two Workshops

One decade elapsed between the first work-
shop on food webs and the gathering that led
to this book. The U.S. Department of Energy
sponsored a food web workshop organized
by the Oak Ridge National Laboratory and
held in Fontana Village, North Carolina in
October 1982 (DeAngelis et al., 1983). This
workshop was an important event in the early
development of food web theory. A number
of influential papers subsequently published
in the open literature were born of ideas and
analyses presented at this workshop (e.g., a
special series of papers in Ecology, Vol.
69(6), 1988). Perhaps because it was the first
such gathering of researchers dealing with
an emerging discipline, the Fontana Village
workshop generated a relatively mild contro-
versy regarding the interpretation of food web
connectance (e.g., Paine (1983, 1988)), one
that has only recently subsided. It is impor-
tant to acknowledge that the first workshop
was instrumental in stimulating a decade of
vigorous research that has resulted in the redi-
rection of inquiries and the emergence of new
questions. '

During the decade that followed, the body
of published food web research has grown
exponentially and the discipline has matured
considerably. A food web symposium was
organized by Joel Cohen and Don DeAngelis
and held at the 1990 INTECOL meetings in
Yokohama, Japan. Even though this second
meeting was much smaller than the first (eight
vs. 42 participants), it generated vigorous
debate among attendees involved in empirical
versus theoretical aspects of food web re-
search (e.g., Cohen (1991), and Polis (1991,
1994)). Most recently, a second major work-
shop convened in September 1993 at Colo-
rado State University’s Pingree Park Confer-
ence Center in the Rocky Mountains (this
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volume). The Pingree Park symposium
brought together more participants (72) and
a wider spectrum of views and approaches
then ever before, with the objective to assess
~ where the discipline stands and to facilitate
future research. Eight participants (but only
five speakers) were present at both the 1982
and 1993 workshops, and representation by
female ecologists was markedly greater at
the second workshop (24% vs. 0% of first
aathors, and 17% vs. 5% of total partici-
pants).

One can infer much about the development
of the discipline by comparing the areas em-
phasized by the two workshops. Nineteen
oral papers were presented at Fontana Village
and 30 oral papers presented at Pingree Park.
The oral papers presented at Gatlinburg and
Pingree Park workshops are broken down by
subject mater and ecosystem. Three differ-
ences are apparent. The 1993 workshop had:
(1) More empirical emphasis relative to pure
theory; (2) relatively little focus on patterns
based on topological webs; and (3) at least
some presentation of food web applications
to resource management and environmental
problems. The 1993 workshop also had a
more even distribution among aquatic and
terrestrial studies, but soil/microbial studies
remained underrepresented.

1982 1993
Theory/models 84% 27%
Patterns in web topology 21% 7%
Empirical/experimental 16% 73%
Applied 0% 17%
Aquatic/marine 10% 33%
Terrestrial 5% 40%
Soil/protozoa 5% 13%

Some of the main issues discussed at the
Gatlinburg meeting were: (1) Intervality of
web digraphs; (2) patterns generated by dy-
namic food web models; (3) relationships be-
tween observed and model web topology with
predictions from May’s (1972, 1975) stabil-
ity-complexity model; (4) energetic and bio-
logical constraints on omnivory, food chain
length, and looping; (5) relationship between
connectivity and interaction webs; (6) assem-
bly rules; (7) species packing in topological
webs; and (8) ecosystem cycling. Primary
topics discussed at the Pingree Park work-

shop included: (1) Trophic cascades and the
interaction between production and consump-
tion; (2) temporal/spatial variability in food
webs, scale effects, and transport across
boundaries; (3) relationships between direct
and indirect interactions; (4) effect of distur-
bance in structuring food webs; (5) the role
of key species; (6) the influence of life history
on web dynamics; (7) effect of adaptive for-
aging on food webs; (8) predicting effects
of anthropogenic disturbances on food webs;
and (9) application of empirical data and food
web models to agricultural pests and fisheries
management. [n summary, comparison of the
two workshops reveals movement toward
more detailed empirical analyses, less focus
on static descriptions, greater integration be-
tween patterns and ecological -processes,
greater refiection on the role of operational
units and scale, and the emergence of applica-
tions of food-web knowledge to natural re-
source problems.

Some Promising Areas for Inquiry

Following four days of discussion, partici-
pants at the Pingree Park workshop charted
areas likely to produce significant advances
in food web knowledge and its application
to other areas of basic ecology and resource
management. We briefly outline topics from
closing summaries by D. Strong, B. Menge,
and L. Persson. Greater integration is needed
between population dynamics and the flow
of energy, biomass, and nutrients in food
webs (i.e., better coupling of the biodemo-
graphic (species interactions) with the bio-
geophysical (energy/nutrient cycling) para-
digm). Analysis of stable isotope ratios will
become more prevalent as a means for docu-
menting flow (Peterson and Fry, 1987; Dug-
gins et al., 1989; Kling et al., 1992). What
is the relationship between flow web and in-
teraction web for a given system? How do we
demonstrate interaction strength empirically,
and how can this be achieved in the study of
large or complex systems? Greater insights
into the relationship between wgb structure
and dynamics will be achieved from greater
examination of the effects of spatial and tem-
poral scale, habitat boundaries, and transport
(e.g., the relative incidence of habitat donor
control versus feedbacks between habitats).
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In this vein, community gradient studies
could be integrated with food web research.
The role of detritus and material cycling de-
- serves greater attention, and greater coupling
between traditional producer-grazer webs
and detrital webs is needed.

Given the importance of ontogenetic niche
shifts for many species, what are the effects
of size structure on food web structure and
function? Perhaps the more fundamental
question is What is the influence of life his-
tory variation on web structure/function?
Given the transient behavior derived from
simple food web models, how do we predict
long-term dynamics? Even reliable predic-
tion of short-term dynamics may be a daunt-
ing task in speciose systems. We need to
identify those phenomena that are species-
specific (key species) versus those dependent
only on functional groups. Greater integra-
tion of evolutionary biology with food web
ecology likely would strengthen both fields.
Finally, the application of food web ap-
proaches to problems such as bioaccumula-
tion, contaminant fates, exploited popula-
tions, habitat alteration, and global climate
change will feed back to basic research and
improve existing paradigms that are only now
in their infancy.

/J
Food Webs in Altered Ecosystems

It would be inappropriate to end this introduc-
tory chapter without mentioning one of the
most dominant factors currently influencing
food webs. Humans, and not just the natural
ecological factors discussed throughout this
book, play a major role in the distribution
and abundance of species and the structure
and dynamics of food webs. Anthropogenic
influences range from the extirpation of top
predators and the harvesting of dominant or
key species, to the wholesale introduction
of exotic species. As biologists interested in
theory and unifying principles, we often seek
to discern natural processes and patterns, ide-
ally within pristine systems. Consequently,
we tend to pay comparatively little heed to
artificial phenomena caused by human alter-
ation of natural systems. As Crowder et al.
and Parsons (this volume) demonstrate so
well, such a worldview is myopic and serves

to inhibit our understanding of the structure
and dynamics of the ecosystems we now
study. Surely, it will be difficult to under-
stand food web biology when many key play-
ers are absent or decimated, when biodiver-
sity has been reduced to varying and
unknown degrees, or when exotic species be-
come important system components. It is un-
certain how the structure of natural systems
and those altered by humans correspond to
one another; we are unsure to what extent
knowledge gained in one system applies to
the other.

The two principal effects of humans have
been, first, to reduce the diversity of commu-
nities and food webs, and, second, to homog-

enize similar biomes via species introduc-

tions. Diversity continues to be reduced by
the elimination of species that compete with
or threaten humans, the overharvest and
depletion of species that serve as' commodi-
ties, the replacement of natural habitats with
agrosystems or urban areas, the reduction of
species sensitive to chemical or thermal pol-
tution, and the loss of species from habitat
fragmentation (Ehrlich and Ehrlich, 1981).
Large top predators, from mammalian carni-
vores to birds and fish, have been decimated
and now exist at a fraction of their former
abundances and distributions (Estes, in
press). The same is true for many species
exploited for food or fiber: marine mammals
(e.g., the great whales, fur seals, sea otters),
certain fish stocks (e.g., salmon, tuna, to-
toaba), birds (e.g., passenger pigeon, dodo),
herbivorous mammals (e.g., rhinoceros, bi-
son and other components of North Ameri-
ca’s pleistocene megafauna), and many trees
from tropical hardwood and temperate old
growth forests. Likewise, species that histori-
cally occupied habitats now used as crop- and
rangelands are extinct or greatly endangered
(e.g., black-footed ferret, San Joaquin kit
fox, teosinte grass). Lost or decimated spe-
cies, many of which were dominant compo-
nents of local communities, exist at all levels
of the trophic spectrum.

We can imagine that many of these species
were key community interactors, and their
reduction has had major effects on remaining
biotas. Potential effects occur both within the
context of food web interactions (e.g.,
changes in consumer-resource interactions,
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competition, apparent competition) and out-
side (e.g., symbioses, habitat facilitation, bi-
otic disturbance, translocation of nutrients or
organic matter). Analyses of several human-
influenced systems illustrate the magnitude
and types of changes that may accompany
the reduction of dominant species. Although
our database and knowledge of such systems
is highly variable, there is strong indication
that many effects of species alteration are
mediated through the food web. In these
cases, changes in the abundance of focal spe-
cies are often accompanied by changes in the
abundance of species linked both directly via
consumer-resource interactions, and indi-
rectly via competition and trophic cascades.
In general, populations of resources and com-
petitors tend to increase, and populations of
predators decrease, with declines in formerly
dominant species. Removal of top predators
often allows intermediate-level predators to
increase, due both to the relaxation of compe-
tition and intraguild predation (Polis et al.,
1989; Polis and Holt, 1992).

We mention a few of many possible sys-
tems in which dominant species have been
extirpated or their populations greatly re-
duced: overfishing of marine stocks with
changes in the populations of associated re-
sources, competitors, and intermediate-level
consumers (Parsons and Crowder et al., this
volume); decimation of the great whales in
the southern oceans with increases in krill
and competitor populations (e.g., penguins,
seals, and smaller whales; Laws (1985) and
Brownell et al. (1989)); systemwide changes
from overfishing of Peruvian anchovetta, in-
cluding reduction of seabirds that eat these
fish, greater prey (phytoplankton) abun-
dance, and greater detrital input (and possible
secondary production) to benthic communi-
ties (Murphy, 1972; Rowe, 1981); extirpa-
tion of sea otters with major changes in prey
(e.g., urchins and abalone), the resources of
these prey (kelp and other algae), and the
consequent structure of entire subtidal (and
intertidal) systems (Simenstad et al., 1978;
Duggins et al., 1989); systemwide changes
in the productivity and abundance of taxa
throughout the trophic spectrum with the
overharvest of oysters (Ulanowicz and Tut-
tle, 1992); changes in species abundances and
the composition of native mammal communi-

ties upon the arrival of sheep and the decima-
tion of predators in the Great Basin of North
American (Berger and Wehausen, 1991); and
cascading effects of the Pleistocene extinc-
tion of the North American megafauna due
to overhunting (Janzen, 1986).

The other major alteration associated with
humans is exotic species introductions, both
deliberate (e.g., crop plants, domesticated
animals, stocked game fish) and accidental
(i.e., weedy plants and animals, pathogens).
Changes on impacted ecosystems are often
obvious and all-encompassing: e.g., the near-
wholesale replacement of entire biomes
(e.g., prairies) and their associated fauna
with a few species of agrosystem plants and
their associated pest fauna; the trend toward
homogenization of tropical lowlands caused
by introductions of trees and weedy plants
that provide commodities; decimation of the
rich native fish assemblage of Lake Victoria
by exotic Nile perch (Kaufman, 1992); mas-
sive reductions of salmonid fishes in lakes
following introduction of Mysis relicta
shrimp (Lasenby et al., 1986) with indirect
effects on nearby terrestrial communities
(e.g., decreased densities of bears and eagles)
(Spencer et al., 1991); changes in North
American forests following introduction of
chestnut blight and reduction of chestnut
(Hill, 1994); the loss of systemwide produc-
tivity from desertification of large parts of
the world wrought by human activities and
overgrazing by introduced herbivores (e.g.,
the Sahiel, southwestern North America)
(LeHouerou and Gillet, 1986); the destruc-
tion of temperate forests by exotic insect her-
bivores (e.g., gypsy moth) (Stephens, 1971);
the alteration of plant-pollinator communities
by exotic honeybee strains (Roubik, 1978;
Seely, 1985); and the degradation of entire
communities with the introduction of particu-
larly noxious species (e.g., fire ants and zebra
mussels in North America). In many northern
temperate freshwater ecosystems, fish stock-
ings and other management practices deter-
mine much of the food web structure. Intro-
duced species can carry pathogens and
parasites that infect native species via appar-
ent competition (e.g., malaria carried by ex-
otic birds decimating the native Hawaiian
avifauna, which, in tumn, caused native
plants, dependent on native pollinators, to
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decrease) (Holt and Lawton, 1994). Overall,
introductions and the ecological success of
dominant exotic species tend to homogenize
the community structure of entire biomes in
different biogeographic areas.

It should be obvious that humans influence
food web structure and dynamics in ecosys-
tems worldwide. Although much of the book
does not directly address such anthropogenic
influences (but see section introduced by
Crowder et al., this volume), it is our hope
that it contributes to our ability to deal with
these changes by advancing basic understand-
ing. For example, the chapters on spatial
components of food webs convey a clear mes-
sage to conservation biologists. Allochtho-
nous input via the flow of energy, material,
and organisms across boundaries is often a
key process in web dynamics and the func-
tioning of ecosystems. Nature preserves are
likely not isolated trophically from sur-
rounding ecosystems. The spatial dynamics
of trophic interactions must be considered in
order to foster ecosystem integrity and bio-
diversity. Similarly, the recognition that indi-
rect effects are often important and that the
productivity of particular species may depend
on taxa positioned several links away in a
food chain might suggest that entire commu-
nities should to be managed in order to con-
serve rare species. Nearly every page of this
book provides pieces to a puzzle that, when
assembled, potentially will provide a great
deal of useful information as we attempt to
maintain at least a semblance of the natural
world.
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