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Abstract. Photoautotrophs are generally considered to be the base of food webs, and
habitats that lack light, such as caves, frequently rely on surface-derived carbon. Here we
show, based on analysis of gut contents and stable isotope ratios of tissues (13C:12C and
15N:14N), that sulfur-oxidizing bacteria are directly consumed and assimilated by the fish
Poecilia mexicana in a sulfide-rich cave stream in Tabasco state, Mexico. Our results provide
evidence of a vertebrate deriving most of its organic carbon and nitrogen from in situ
chemoautotrophic production, and reveals the importance of alternative energy production
sources supporting animals in extreme environments.
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INTRODUCTION

The organic matter and energy that moves through

food webs has been assumed to originate solely from

plants and decomposers that transform organic matter

via the microbial loop (Naeem 2002). In the absence of

light to support photosynthesis, subterranean life is

frequently assumed to be supported by consumption of

surface-derived carbon (Griebler 2001, Alfreider et al.

2003). Previous studies using stable isotope analysis,

however, have demonstrated that subterranean macro-

invertebrates can obtain organic carbon from chemoau-

totrophic producers that oxidize methane in aquifers

(Opsahl and Chanton 2006), lakes (Bunn and Boon

1993, Deines et al. 2009), and streams (Kohzu et al.

2004). Similarly, carbon fixed through the oxidation of

hydrogen sulfide (H2S) provides the foundation for food

chains supporting macroinvertebrates and vertebrates in

caves (Sarbu et al. 1996) and deep-sea hydrothermal

vents and seeps (Van Dover 2002, MacAvoy et al. 2008).

Notably, studies have yet to document any vertebrates

that directly consume microbial chemoautotrophs. Here

we provide evidence of direct consumption and assim-

ilation of chemoautrophic bacteria by a cave-dwelling

fish.

The Cueva del Azufre (Sulfur Cave) system in Mexico

consists of a unique set of stream habitats with all

combinations of exposure to light and toxic H2S: a

sulfidic cave stream within the Cueva del Azufre, the

sulfidic surface stream El Azufre (which flows out of the

sulfur cave and is fed by additional sulfide springs at the

surface), a non-sulfidic cave stream within the Cueva

Luna Azufre, and various non-sulfidic surface streams

and rivers (see Plate 1). All stream types have been

colonized by the detritivorous, live-bearing fish Poecilia

mexicana (Poeciliidae). Despite the lack of physical

barriers, each habitat type harbors a distinct morpho-

type of P. mexicana, and gene flow among populations

residing in different habitats is low, indicating that fish

do not migrate among adjacent habitat types (Tobler et

al. 2008). However, the caves are connected to the

surface by openings large enough to permit some degree

of passive or active transport of organic material into

the subterranean systems. Terrestrial material can fall

into caves through skylights, and guano from bat

colonies is abundant in both sulfidic and non-sulfidic

caves (Tobler 2008). Photosynthetic primary production

is absent in caves (Poulson and Lavoie 2000) and may be

reduced in sulfidic streams because of H2S toxicity

(Bagarinao 1992). The sulfur-rich habitats support

dense, white mats of chemoautotrophic bacteria, includ-

ing Thiobacilli spp. and Acidimicrobium ferrooxidans

(Hose et al. 2000). These bacteria biosynthesize energy-

rich organic molecules using energy derived from the

oxidization of H2S with sulfuric acid (H2SO4) as a

byproduct (Hose et al. 2000). In addition, green and

purple sulfate-reducing bacteria, such as Desulfobulbus

propionicus, are present, and these taxa frequently

produce elemental sulfur as an end product (Hose et

al. 2000).

We analyzed gut contents and stable isotope signa-

tures of primary producer and metazoan tissues (ratios

of 13C:12C and 15N:14N) to estimate the production

sources assimilated by P. mexicana in the different

habitat types. We were mainly interested in determining

if chemoautotrophic bacteria contribute to P. mexicana

biomass in the sulfur-rich surface and cave streams.
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STUDY AREA

The study was conducted in August of 2008 in

southern Tabasco state, Mexico, near the village of

Tapijulapa (see Plate 1 for exact locations). The habitats

sampled include the non-sulfidic surface streams Arroyo

Tacubaya and Rı́o Oxolotan, two sites in the sulfidic

surface stream El Azufre, one site in the non-sulfidic

cave stream Cueva Luna Azufre, and two sites in the

sulfidic cave stream Cueva del Azufre. The non-sulfidic

surface stream (Arroyo Tacubaya) drains into the Rı́o

Amatan, and the sulfidic surface stream drains into the

Rı́o Oxolotan (the two rivers meet to form the Rı́o

Tacotalpa approximately 2 km downstream of the

sampling sites). All surface streams are at least partially

shaded. Both of the cave streams are fed by springs and

are drained by the sulfidic surface stream. Guano from

the Ghost-faced bat, Mormoops megalophylla, is avail-

able to fishes in both the caves. The sulfidic surface and

cave streams are characterized by dissolved H2S

concentrations of up to 300 lmol/L and low concentra-

tions of dissolved oxygen (Hose et al. 2000, Tobler et al.

2006, Plath et al. 2010). The non-sulfidic surface and

cave streams have H2S concentrations below the

detection threshold and dissolved oxygen concentrations

of up to 4.3 mg/L (Tobler et al. 2006, Plath et al. 2010).

In the surface stream habitats, samples were collected

along approximately 50 m of stream, which included

both riffle and pool habitats. In the non-sulfidic cave

stream, all samples came from a single pool of water

containing fish in the main cave chamber. Finally, in the

sulfidic cave stream, samples were collected in cave

chambers V and X (see Parzefall 2001), where both riffle

and pool habitat is available.

METHODS

Sample collections

Gut contents of P. mexicana were analyzed from all

sites, and stable isotope ratios of metazoan tissues and

potential basal food web elements were analyzed for one

site per habitat type. Samples of leaves from the

dominant vegetation (mosses, ferns, Acacia, Heliconia,

and grasses; n ¼ 10) were collected from the riparian

zone of the surface streams. Small seedlings (n ¼ 2),

which had apparently been carried in by bats and

germinated in the dark, were collected from the non-

sulfidic cave. Snails (n¼17) were collected by hand from

each habitat as a proxy for the stable isotope signature

of benthic algae or other predominant biofilms (Vander

Zanden and Rasmussen 1999). Mats of sulfur-oxidizing

bacteria (n¼ 4) were collected from the sulfidic habitats.

Samples of bat feces (n ¼ 6), a potentially important

source of carbon for cave fishes (Tobler 2008), were

obtained from the caves. Fishes were collected from all

habitats with a seine, anesthetized with tricaine meth-

anesulfonate, and preserved in 10% formalin for gut

contents analysis after removal of a sample of muscle

tissue (n ¼ 20) from the dorso-lateral region with a

scalpel. The aquatic hemipteran Belostoma sp. (n ¼ 9)

was collected from the non-sulfidic cave, and samples of

dipteran larvae were taken from the non-sulfidic cave

stream (n ¼ 4) and the sulfidic surface stream (n ¼ 5).

Samples of snails and dipteran larvae were composites

of several individuals to ensure adequate material for

mass spectrometry. All samples were placed in plastic

bags with salt, which has little influence on stable

isotope signatures of tissues (Arrington and Winemiller

2002), for later processing at Texas A&M University.

Gut contents analysis

Gut contents analysis was used to elucidate food

resources ingested by P. mexicana from the different

habitat types. Formalin-preserved specimens were dis-

sected, and proportions of dietary items in the foregut

were quantified (methods in Winemiller [1990]). We

recognized the following food categories: detritus, algae

(predominantly filamentous algae and diatoms), sulfur

bacteria, invertebrates (predominantly the dipteran

larvae Goeldichironomus fulvipilus and small snails),

and bat guano (shredded insect parts). Because P.

mexicana is not capable of masticating and reducing

insects into smaller parts, we were able to distinguish

insect fragments from the consumption of bat guano

from insects that had been consumed whole. Accord-

ingly, insect fragments (chitin) were classified as bat

guano. Chemoautotrophic sulfide-oxidizing bacteria

were clearly identifiable in gut contents in the form of

dense aggregations of white filaments. Most fish also

had sand in their guts, but because sand cannot be

assimilated, it was excluded from statistical analyses.

For data analysis, volumetric proportions of each

dietary category were arcsine-square-root transformed

and then subjected to a multivariate analysis of

covariance with habitat type and site (nested within

habitat type) as factors. F ratios were approximated

using Wilks’ lambda. Assumptions of normal distribu-

tion and homogeneities of variances and covariances

were met for this analysis. For visualization of the gut

contents data, we performed a correspondence analysis

in CANOCO (version 4.5; ter Braak and Smilauer 2002).

Correspondence analysis scores from the first two axes

were averaged for each site and plotted in Fig. 1.

Stable isotope analysis

Samples of primary producers, bacteria mats, fishes,

and insects were rinsed and then soaked in deionized

water for four hours to remove salt. The shells were

removed from snail samples by hand. All samples were

subsequently dried at 658C for 48 hours and ground to a

fine powder using a mortar and pestle. Subsamples were

then weighed into Ultra-Pure tin capsules (Costech

Analytical, Valencia, California, USA) and sent to the

W. M. Keck Paleoenvironmental and Environmental

Stable Isotope Laboratory (University of Kansas,

Lawrence, Kansas, USA) for analysis of carbon and

nitrogen isotope ratios using a ThermoFinnigan MAT
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253 continuous-flow mass spectrometer (Thermo Fisher

Scientific, Bremen, Germany). The standard was Pee

Dee Belemnite limestone for carbon isotopes and

atmospheric nitrogen for nitrogen isotopes.

The MixSIR model (Moore and Semmens 2008) was

used to estimate the relative contribution of production

sources assimilated by P. mexicana. This model uses a

Bayesian framework to calculate proportional contribu-

tions of production sources from 0% to 100% while

accounting for uncertainty associated with multiple

sources, fractionation, and isotope signatures (Moore

and Semmens 2008). Models were run separately for

each habitat using in situ samples of production sources,

P. mexicana, and aquatic invertebrates. Samples were

not corrected for lipids because C:N ratios were

relatively low (mean P. mexicana C:N ¼ 3.6, mean

aquatic invertebrate C:N ¼ 4.5). We accounted for

trophic fractionation of d15N using values from a

synthesis of field and laboratory measurements of

fractionation in herbivorous fishes and invertebrates

(mean and standard deviation of 2.5%; Vander Zanden

and Rasmussen 2001). The trophic level (TL) of P.

mexicana was calculated for all of the habitats based on

the equation from Adams et al. (1983):

TL ¼
Xn

j¼1

TjðPijÞ þ 1

where Tj is the trophic position of prey species j and Pij is

the volumetric proportion of consumed food of species i

feeding on prey species j. This method calculates plants as

TL 1.0. Since it is unclear whether P. mexicana can

actually absorb nutrients from insects present in bat

guano, which is comprised of fragments of exoskeleton,

we calculated trophic position for cave models both with

and without bat guano. We assumed a TL of 2.0 for

dipteran larvae and TL of 3.0 for Belostoma sp.

Differences in d13C among the streams were small for

samples of C4 grasses (non-sulfidic stream value ¼

FIG. 1. Scores (mean 6 SD) of a correspon-
dence analysis on dietary items in gut contents of
Poecilia mexicana from different sites. Non-
sulfidic surface habitats (AT, Arroyo Tacubaya;
RO, Rio Oxolotan) are indicated in blue, sulfidic
surface stream (EA I, El Azufre, cave resurgence;
EA II, El Azufre, big spring) in yellow, the
sulfidic cave stream (CA, Cueva del Azufre, cave
chambers V and X) in red, and the non-sulfidic
cave stream (LA, Cueva Luna Azufre) in orange.

TABLE 1. Relative frequencies (6 SD) of volumetric proportions of different food items found in Poecilia mexicana from different
habitats.

Site H2S Light exposure N Detritus Sulfur bacteria Algae

Cueva del Azufre, chamber V þ � 38 0.10 6 0.12 0.19 6 0.25 ,0.01 6 ,0.01
Cueva del Azufre, chamber X þ � 40 0.03 6 0.06 0.07 6 0.12 ,0.01 6 ,0.01
El Azufre, cave resurgence þ þ 33 0.21 6 0.21 0.27 6 0.29 0.01 6 0.03
El Azufre, big spring þ þ 41 0.37 6 0.29 0.35 6 0.29 0.01 6 0.02
Cueva Luna Azufre � � 41 0.28 6 0.27 ,0.01 6 ,0.01 0.17 6 0.21
Arroyo Tacubaya � þ 28 0.73 6 0.16 ,0.01 6 ,0.01 0.23 6 0.17
Rio Oxolotan � þ 30 0.69 6 0.14 ,0.01 6 ,0.01 0.02 6 0.03

Notes: Note that sand made up the remaining proportion of gut contents. Trophic levels were calculated both with and without
insects derived from bat guano. The symbols þ and � indicate presence or absence of hydrogen sulfide and light in each of the
habitats. N is the number of samples.
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�13.4%, sulfidic stream value ¼ �13.3%), therefore

models were run using the average value for this

production source. However, among-habitat variation

in d13C was high for C3 macrophytes (ANOVA, F2,7 ¼
8.20, P , 0.05), thus C3 macrophyte values were not

combined. Because the sulfidic surface stream is adjacent

to both caves, which lack plant life, the sulfidic surface

stream C3 macrophyte mean was used for the sulfidic

cave stream model. Among-habitat variation for snails

was high for both d13C (ANOVA, F3,12 ¼ 11.26, P ,

0.001) and d15N (ANOVA, F3,12 ¼ 168.71, P , 0.0001).

We used the mean d13C and d15N signature of snails from

the non-sulfidic stream site as the stable isotope signature

of benthic algae after accounting for trophic fractionation

of d15N (Vander Zanden and Rasmussem 2001). Samples

of bacterial mats collected from the sulfidic stream were

more enriched in 13C (�1.0–0.2%) compared to the

sample collected from the sulfidic cave (�7.1%), so these

values were not combined for the sulfur-rich habitat

models. Bat guano was more depleted in 13C and 15N in

the non-sulfidic cave (mean d13C ¼�28.4, mean d15N ¼
6.5) compared to the sulfidic cave (mean d13C ¼�24.5,
mean d15N ¼ 7.9) and therefore were not combined for

the cave models. We resampled sulfidic cave stream,

sulfidic surface stream, and non-sulfidic surface stream

models a total of 100 000 times. Non-sulfidic cave stream

models were resampled a total of 1 000 000 times. For all

of the models, the maximum importance ratio was

,0.0001, and there were .1000 posterior draws,

indicating that the true posterior density was effectively

estimated. Cave models using TL calculated with insect

fragments were essentially the same as models that

eliminated insect fragments from TL calculations; there-

fore we only present cave models based on TL calculated

with insects derived from bat guano.

RESULTS

Poecilia mexicana gut contents were variable among

habitat types (Table 1). Multivariate analysis of variance

(MANOVA) of dietary items indicated significant

differences among habitats (Fig. 1; F12, 638 ¼ 46.25, P

, 0.001) as well as site-specific variation within habitats

(site nested within habitat: F12, 638 ¼ 9.96, P , 0.001).

Whereas fish in non-sulfidic surface habitats primarily

ingested detritus and algae, conspecifics in the sulfidic

surface and cave streams had diets dominated by

chemoautotrophic bacteria and aquatic invertebrates,

suggesting that the organic matter assimilated by fish in

sulfidic habitats could derive from chemoautotrophic

primary producers. Fish TL calculated with insects

derived from bat guano ranged from 2.0 to 2.5, and TL

calculated without insect fragments ranged from 2.0 to

2.3 (Table 1).

Among-habitat variation in stable isotope ratios of

fish was high for both d13C (ANOVA, F3,16¼ 43.49, P ,

0.001, Fig. 2) and d15N (ANOVA, F3,16 ¼ 179.98, P ,

0.001). Tukey’s multiple comparisons test indicated that

d13C of P. mexicana was significantly different among all

streams except for those in sulfidic and non-sulfidic

caves. Fish from the sulfidic and non-sulfidic cave

streams were most enriched in 13C (higher d13C values),

and fish from the non-sulfidic cave stream were most

depleted. Additionally, fish from the sulfidic cave stream

were significantly more depleted in 15N (lower d15N
values) compared to fish from all other habitats (Fig. 2).

The sulfidic cave stream MixSIR model estimated that

P. mexicana assimilated carbon and nitrogen primarily

from chemoautotrophic bacteria (median contribution¼
53%, 5% and 95% confidence percentiles ¼ 0.41% and

0.59%; Table 2, Appendix) followed by C3 plants

(median contribution ¼ 40%, 5% and 95% confidence

percentiles ¼ 0.33% and 47%). In contrast, P. mexicana

in all other habitat types assimilated material mostly

from C3 plants; median contributions ranged from

0.70% in the sulfidic surface stream to 0.90% in the

non-sulfidic surface stream. The MixSIR model indicat-

ed that chemoautotrophic bacteria made a small

contribution to fish in the sulfidic surface stream as well

(median contribution ¼ 0.21%, 5% and 95% confidence

TABLE 2. Median and 5–95% confidence percentiles (in parentheses) of estimated source contributions to P. mexicana in each
stream habitat.

Habitat Bacteria Benthic algae Bat guano C3 plant C4 grass

A. Cueva del Azufre, chamber V 0.52 (0.41–0.59) NP 0.04 (,0.01–0.59) 0.40 (0.33–0.47) 0.03 (,0.01–0.10)
B. El Azufre, big spring 0.21 (0.02–0.61) NP NP 0.70 (0.36–0.86) 0.09 (0.01–0.19)
C. Cueva Luna Azufre NP NP ,0.01 (0–0.02) 0.78 (0.76–0.80) 0.21 (0.20–0.23)
D. Arroyo Tacubaya NP 0.07 (,0.01–0.20) NP 0.90 (0.78–0.96) 0.03 (,0.01–0.06)

Notes: Stream types sampled include: A, sulfidic cave; B, sulfidic surface; C, non-sulfidic cave; and D, non-sulfidic surface. NP
indicates that the production source was not present in that habitat.

TABLE 1. Extended.

Invertebrates

Trophic level

With insects Without insects

0.38 6 0.36 2.4 6 0.4 2.3 6 0.3
0.44 6 0.41 2.4 6 0.4 2.2 6 0.3
0.27 6 0.28 2.3 6 0.3 2.3 6 0.3
0.08 6 0.19 2.1 6 0.2 2.1 6 0.2
0.47 6 0.30 2.5 6 0.3 2.2 6 0.3

,0.01 6 ,0.01 2.0 6 0.0 2.0 6 0.0
,0.01 6 ,0.01 2.0 6 0.0 2.0 6 0.0
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percentiles ¼ 0.02% and 0.61%), but the diagnostic
histogram was slightly right skewed, indicating that the

model may have been inefficient in approximating

posterior distributions. In the sulfidic cave stream,

chemoautotrophic bacteria also were an important basal

production source supporting the predatory hemipteran

Belostoma sp. (median contribution ¼ 0.47%, 5% and

95% confidence percentiles ¼ 0.38% and 0.56%) and

dipteran larvae (median contribution ¼ 0.36%, 5% and
95% confidence percentiles ¼ 0.23% and 0.49%).

DISCUSSION

Food webs in unshaded, autotrophic streams are

frequently based on algal production sources because

they have more nutritional value and are less recalcitrant

than tissues of most macrophytes (Rounick et al. 1982,
McCutchan and Lewis 2002). However, in heavily

shaded, heterotrophic streams, the availability of algae

decreases and terrestrial-based production sources, such

as dissolved organic carbon (DOC; Meyer et al. 1997,

Hall and Meyer 1998) and leaf litter (Wallace et al. 1999,

Hall et al. 2000), are more important. Streams in caves

are almost always heterotrophic because of the absence

of light. Consequently, many metazoans are dependent

on terrestrial-based production sources, such as biofilms

fueled by DOC (Culver 1985, Simon et al. 2003) and bat

guano (Harris 1970, Ferreira and Martins 1999). In

caves with sufficient inputs of solute-rich groundwater,

chemoautotrophic production can provide an additional

source of organic carbon (Sarbu et al. 1996, Opsahl and

Chanton 2006).

Our results indicated that fish in the non-sulfidic

streams, both above- and belowground, appeared to be

supported almost entirely by photosynthetic primary

production. In the non-sulfidic cave, carbon is imported

through bat guano deposition and detritus in runoff from

surface habitats. In the sulfidic surface stream, plants

primarily support metazoan biomass despite the presence

of sulfur bacteria. In contrast, in the sulfidic cave stream,

fish and aquatic invertebrates obtained comparatively

little material from detritus derived from photoauto-

trophs. Both gut contents and stable isotope analyses

indicated that most of the carbon and nitrogen obtained

by fish from the sulfidic Cueva del Azufre stream derives

from in situ chemoautotrophic production.

FIG. 2. Stable isotope ratios (mean 6 SD) for P. mexicana and production sources in the (A) sulfidic cave, (B) sulfidic surface
habitat, (C) non-sulfidic cave, and (D) non-sulfidic surface habitat. Plant primary producers are highlighted in green, bacteria in
yellow, bat guano in brown, fish in red, and other consumers in blue.
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The assimilation of chemoautotrophic bacteria by fish

in the sulfidic cave stream yielded significantly lower

d15N values compared to fish from all the other habitats.

The differences in d15N values of bacteria and thus fish

between the sulfidic cave stream and the sulfidic surface

stream could have been due to variation in the nitrogen

cycle between the two habitats. When ammonium

concentrations are high, assimilation by bacteria gener-

ally favors 14N over 15N, resulting in high isotope

fractionation and lower values of d15N (Hoch et al.

1992, Lee and Childress 1994). Higher concentrations of

ammonium in the sulfidic cave compared to the sulfidic

surface stream could have contributed to lower d15N
values of bacteria and thus fish. Nitrification also can

deplete 15N (Yoshida 1988).

Analysis of gut contents revealed that fish in the

sulfidic cave stream primarily consumed sulfur-oxidizing

bacteria and insects, including aquatic dipteran larvae

and exoskeleton fragments from bat guano. However,

differences among mean d15N of sulfur-oxidizing bacte-

ria (�7.1), dipteran larvae (0.10), and fish (�0.4) indicate
that fish had not assimilated much, if any, insect

biomass. This discrepancy between gut contents and

stable isotope data can be explained by the low

digestibility of exoskeleton fragments observed in fish

guts. Because the insects had already passed through the

intestines of the bats, the remaining insect fragments

from bat guano were mostly exoskeleton comprised of

chitin, a highly recalcitrant polysaccharide with very low

nutritional value. Our study provides evidence of a

unique food chain in a sulfidic cave stream consisting of

H2S! bacteria! fish, and contributes further evidence

of alternative energy production sources supporting

animals in extreme environments.
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