Final Report

For the Project

DEVELOPMENT OF BIOLOGICAL INDICATORS OF NUTRIENT ENRICHMENT FOR APPLICATION IN TEXAS STREAMS

6 October 2009

§106 Water Pollution Control Grant # 98665304

Prepared by:

Ryan. S. King, Ph.D. Principal Investigator and Project Contact Associate Professor, Department of Biology, Baylor University One Bear Place #97388, Waco, TX 76798 Tel: 254.710.2150; E-mail: <u>Ryan_S_King@baylor.edu</u> Lab webpage: <u>www.baylor.edu/aquaticlab</u>

and

Kirk O. Winemiller, Ph.D. Co-Principal Investigator; Texas AgriLife Research, Texas A&M University

Co-investigators: Jason M. Taylor, Ph. D. candidate (King), Dept. of Biology, Baylor Jeffrey A. Back, Ph.D. candidate (King), Dept of Biology, Baylor Allison Pease, Ph. D. candidate (Winemiller), Texas A&M University

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	3
GENERAL DESCRIPTION OF THE SPECIAL STUDY	5
STUDY AREA AND STREAM SAMPLING	8
DATA ANALYSES	14
RESULTS AND INTERPRETATION	
Comparison of BU and TCEQ TP and TN laboratory methods	17
Periphyton nutrient content across ecoregions	21
Surface-water and periphyton chlorophyll across ecoregions	25
Estimation of thresholds for univariate biological indicators, Ecoregion 29	26
Multivariate analysis of algal species composition among ecoregions	31
Threshold responses of algal species to nutrient gradients in Ecoregion 29	39
Multivariate analysis of fish species composition among ecoregions	48
Threshold responses of fish species to nutrient gradients in Ecoregion 29	54
CONCLUSIONS AND RECOMMENDATIONS	67
LITERATURE CITED	74
APPENDIX A (1-7)	76
APPENDIX B	PDF
APPENDIX C.	PDF
APPENDIX D	PDF

ACKNOWLEDGMENTS

Financial support of this study was provided by the Texas Commission on Environmental Quality to Ryan S. King at Baylor University and Kirk O. Winemiller at Texas AgriLife for "Development of biological indicators of nutrient enrichment for application in Texas streams," Section106 Water Pollution Control Grant # 98665304, and to Kirk O Winemiller and Ryan S. King for "Refinement and Validation of Habitat Quality Indices (HQI) and Aquatic Life Use (ALU) Indices for Application to Assessment and Monitoring of Texas Surface Waters" Contract 582-6-80304. We thank Mark Fisher, Clay Sebek, Lori Hamilton, Gregg Easley, and others from the TCEQ for assistance in managing both of these contracts. Numerous graduate and undergraduate students from Baylor and Texas A&M contributed to the collection of the data used in this report. We especially thank Dr. Barbara Winsborough, of Winsborough Conulting, Leander, TX, for her hard work and rapid delivery of algae species identifications from both the field and experimental studies. Dr. Winsborough conducted all algal species identifications reported in this document.

The TCEQ has committed to the development of nutrient criteria for waters in Texas as presented in the November 3, 2006 draft of the Nutrient Criteria Development Workplan. Under that plan the TCEQ is exploring several complementary strategies to develop nutrient criteria. Strategies now being investigated include the following: 1) basing criteria on concentrations of nutrients; 2) basing criteria on direct indicators of eutrophication, such as chlorophyll a; 3) developing "translator" procedures that relate concentrations of nitrogen and phosphorus to direct indicators of eutrophication; 4) basing criteria on historical "ambient" averages with a statistical allowance for variability; and 5) developing criteria based on the effect of nutrients or indicators of eutrophication on uses.

This study is only one component of the larger water quality standard criteria development process that will involve a diverse stakeholder workgroup and formal public participation process to establish regulatory criteria. For this study the choice of data analysis, presentation and interpretation of results, and the report conclusions and recommendations are those of the Principal Investigators and not those of the Texas Commission on Environmental Quality (TCEQ). No official endorsement of the TCEQ should be inferred.

GENERAL DESCRIPTION OF THE SPECIAL STUDY

Water quality criteria and standards are developed by States to improve water quality and to ensure that a water body is supportive of its designated aquatic life uses (ALU). Nutrient pollution caused by excessive loading of nitrogen (N) and/or phosphorus (P) can significantly limit the ability of streams to support their designated ALUs. In response to this problem, the U.S. EPA published its National Strategy for the Development of Regional Nutrient Criteria (1998), which detailed a comprehensive plan to be used by States for the development of scientifically defensible, numerical criteria for nutrients. The plan emphasized the need for the inclusion of endpoints that reflect the biological integrity of aquatic ecosystems and are supportive of ALUs. However, relatively few States have been sufficiently equipped with the necessary nutrient and biological data that could be used to develop defensible regional criteria, particularly for wadeable streams. Consequently, many States are either struggling to develop criteria or have had to implement numerical nutrient criteria based on regional EPA guidance without a clear understanding of the implications of these criteria to supporting biological integrity and ALUs in their respective States.

Texas has made significant progress in the development of nutrient criteria for reservoirs, but limited research has been done in wadeable streams. Because streams function differently than reservoirs, indicators of nutrient-related degradation that are used in reservoirs may have limited applicability in streams (e.g., surface-water chlorophyll a). In streams, attached vegetation (algae, bacteria, fungi, and macrophytes) and associated animals (macroinvertebrates, fish) are the biological indicators most likely to be affected by nutrient enrichment. Identifying linkages between surface-water nutrients (e.g., total phosphorus, total nitrogen) and biological indicators of aquatic life uses in streams is therefore imperative for development of defensible, numerical nutrient criteria.

We evaluated new indicators of nutrient-related alteration to wadeable stream ecosystems by bridging two complementary ongoing projects in the Subhumid Agricultural Plains (SAP) ecoregion of Texas. (1) a TCEQ-funded study on refinement and validation of habitat quality indices (HQI) and fish Index of Biotic Integrity in 64 streams in the SAP ecoregion, directed by

K. O. Winemiller of Texas A&M University (TAMU) with R. S. King of Baylor University (BU) (Winemiller et al. 2009), and (2) a US EPA Region 6 funded study on nutrient criteria development in the Cross Timbers subregion of the SAP of Texas, directed by R.S King at BU (Appendix B). At the initiation of the EPA study, BU intentionally selected 26 of their TCEQ HQI sites for their EPA study with the goal of maximizing physical, chemical and biological information for criteria development. However, sites sampled by TAMU located in the Blackland Prairies and East Central Texas Plains ecoregions of the SAP have not been sampled for nutrients or other nutrient indicators, as well as some additional HQI study sites sampled by BU in the Cross Timbers. Thus, we expanded sampling of surface-water nutrients and a few key biological indicators (periphyton metrics) to the 12 additional HQI sites not sampled for nutrients by BU and all 26 sites studied by TAMU as part of the TCEQ HQI study, thus adding nutrients and periphyton to the ongoing habitat and fish assessments at 64 stream sites in summer 2008. The linkage between the EPA and TCEQ studies effectively added a considerable amount of information for relatively little cost because the additional sample collection took place during site visits already planned for fish and habitat assessment. This overarching goal of the study was to help Texas in its ongoing effort to develop defensible, effects-based nutrient criteria in wadeable streams.

The specific objectives of this study were:

- Compare surface-water total phosphorus (TP) and total nitrogen (TN) values measured by Baylor University with values measured by TCEQ. BU and TCEQ labs differ in minimum detectable limits (MDL) between methods for TP, and use different methods altogether for TN;
- Evaluate the utility of soft-substrate periphyton (episammon/epipelon) as an indicator of nutrient enrichment in soft-bottomed streams of the Texas Blackland Prairies and E. Central Texas Plains, and contrast responses of perihyton to nutrients in these ecoregions with those of the Cross Timbers (epilithon, or rock-substrate periphyton).
- 3) Estimate thresholds, if present, in periphyton (nutrient content, biomass, and species composition) and other biological variables measured in the habitat assessment (e.g., microalgae/biofilm cover, macrophyte cover) in response to surface-water TP, TN, and other indicators of stream condition such as sedimentation (e.g., mud-silt cover, substrate

embeddedness), as well as the potential drivers of these stressors (pasture, rowcrop, impervious cover, WWTP outfalls);

- 4) Evaluate responses of fish communities to nutrient enrichment, sedimentation, and drivers of those stressors;
- 5) Recommend responsive ecological indicators and identify nutrient concentrations (thresholds) that correspond to changes in ecological indicators for potential use in nutrient criteria development and stream assessments.

STUDY AREA AND STREAM SAMPLING

Study area

Data were collected from 64 wadeable streams in the Brazos and Trinity River basins within the Cross Timbers, Blackland Prairies, and East Central Texas Plains ecoregions (Figures 1-3). The Cross Timbers ecoregion (ECO 29) is a mosaic of forest, woodland, savanna, and prairie and is currently used mostly for rangeland and pastureland. The Texas Blackland Prairies ecoregion (ECO 32) is a disjunct ecological region distinguished from neighboring regions by fine-textured, clayey soils. This region was historically tallgrass prairie and now contains a higher percentage of cropland than adjacent ecoregions. In addition, large areas of the ecoregion are being converted to urban and industrial uses. The East Central Texas Plains ecoregion (ECO 33) was historically covered by post oak savanna and now is used primarily for pasture and rangeland (Griffin et al. 2004).

Watershed variables describing physical characteristics and topography, land use, and distribution of hydrologic disturbance points (outfalls and dams) were calculated for each site. Watershed boundaries for each sample site were automatically digitized in ArcGIS 9.2 with the ArcHYDRO 9 extension using a 1:24,000 scale digital elevation model (DEM) expressed as a 30 m raster, available from the U. S. Geological Survey. Mean slope and elevation were calculated for each watershed using the digital elevation model. Mean annual precipitation was calculated for each watershed from a polygon coverage of average monthly and annual precipitation. This dataset was obtained from USDA-NRCS. Number of wastewater outfalls and cumulative permitted outfall discharge (MGD) were calculated for each watershed based on the TCEQ municipal and industrial wastewater outfall shapefile available from http://www.tceq.state.tx.us/gis/sites.html. Landcover class percentages were calculated for each watershed using National Land Cover Database (NLCD 2001) available from http://www.mrlc.gov/nlcd_multizone_map.php. All watershed analyses were performed with ArcGIS 9.2 (ESRI, Redlands, CA.).

We sampled the 64 streams in the summer (June, July, and August) of 2008. At each stream site, a 160-500 m study reach was designated for periphyton and water chemistry sampling, fish

collection and local habitat measurements. Reach length was determined based upon the wetted width of the stream (approximately 40 times the average width). Study reach selection, fish collection, and habitat measurements were performed following the protocols of TCEQ Surface Water Quality Monitoring Procedures (TCEQ 2003, 2004).

Local-scale environmental variables

At each study site, we measured 57 habitat variables (Appendix A1) including substrate composition, instream cover, wetted width, depth, canopy cover, bank slope, riparian buffer width, dissolved oxygen (instantaneous), conductivity, and pH on the same dates as fish sampling. We made these measurements at 5 to 6 evenly spaced transects (depending on reach length). Some measurements, such as number of riffles, maximum pool depth, stream sinuosity, and composition of riparian vegetation, were summarized for the entire study reach. Discharge (in ft³/sec) was also measured along a representative transect within each reach using a portable electromagnetic flow meter (Marsh-McBirney Flo-Mate Model 2000). These variables and their relation to the HQI and fish communities were analyzed in Winemiller et al. (2009). A few of these variables were examined carefully in this study because they were shown to be related to fish communities in Winemiller et al. (2009), and of their potential as indicators of nutrient or nutrient-related stressors (e.g., microalgae cover, macrophyte cover, substrate embeddedness, mud-silt cover).

Water chemistry and periphyton sampling

Water chemistry sampling consisted of two sets of surface-water instantaneous grab samples and one reach-scale composite of epilithic (removal and compositing of periphyton from surface of at least 25 rocks, if present) or episammic (composite of several fixed-area samples of sand or finer sediments) periphyton.

The first set of surface-water grab samples for total phosphorus (TP) and total nitrogen (TN) analysis at BU were collected in triplicate in accordance with BU's EPA-approved project QAPP. The second set of surface-water grab samples for TCEQ Houston Laboratory analysis of total kjeldahl nitrogen (TKN), nitrate-nitrite-N (NO3-NO2-N), ammonia-nitrogen (NH3-N), total phosphorus, orthophosphate-P (PO4-P), seston chlorophyll-*a* (CHLA), total alkalinity, chloride,

total suspended solids, volatile suspended solids, sulfate, total dissolved solids, fluoride, and total phosphorus were sampled in accordance with TCEQ Surface Water Quality Monitoring Procedures Volume 1. All field sampling was accomplished by BU and TAMU investigators. In accordance with the applicable procedures and QAPPs, all samples were preserved where necessary, stored at 4°C upon collection, and shipped to BU and TCEQ, respectively, within 24 hours in coolers. The periphyton samples were collected in accordance with the BU nutrient study QAPP.

Periphyton composite samples were handled and analyzed in accordance with the project QAPP. All periphyton physical and chemical analysis was conducted by BU. Periphyton was shipped to BU on ice (4°C) within 24 hours of collection. Periphyton was homogenized and aliquots of known volume were analyzed for the following: total carbon (C), N, and P in the organic (OM) fraction of the periphyton (%); C, N, P per unit dry mass of bulk periphyton (no separation into OM or sediment fractions); ash-free dry mass (AFDM) (g/m2); chlorophyll a (mg/m2); and cell densities of the algae species in the periphyton (no/cm2). Periphyton OM fractions were separated from the bulk (unfractionated) periphyton by suspending aliquots in colloidal silica and centrifuging the mixture to separate sediment or other heavy particles from the lighter algae, bacteria, and other organic matter. Following centrifugation, the OM fraction was rinsed to remove colloidal silica, dried at 60°C for 24 h, pulverized to a fine powder, and analyzed for C, N, and P following Back et al (2008) and Scott et al (2008).

Algae species samples were homogenized, preserved, and identified in accordance with taxonomic methods for soft and diatom algae described in TCEQ (2005). One soft and one diatom taxonomic sample was identified per stream per year. At least 500 diatom and 300 soft algae cells per respective sample were identified (TCEQ 2005). Dr. Barbara Winsborough, an expert periphyton taxonomist from central Texas, performed all of the species identifications in accordance with the approved project plan.

Fish sampling

Within each study reach, all available habitats were sampled using a backpack electrofisher (Smith-Root Model LR-24) and seine net (15' x 6' or 6' x 6'). Crews of 3-4 people electrofished

each study reach in a single upstream pass with a minimum effort of 900 seconds. The reach was then sampled with a seine net with a minimum of six 10-m hauls. Sampling continued beyond the minimum effort until all habitats were sampled and no new species were captured within the study reach. Collected fishes were identified, separated into juvenile and adult age classes, counted, and either released into the habitat or preserved in 10% buffered formalin for later identification. A detailed description of fish community composition and important environmental correlates among the 64 sites is included in Winemiller et al. (2009).

Figure 1. Map showing the study region in the Brazos and Trinity watersheds. Colored lines delineate ecoregion boundaries (green = Cross Timbers, brown = Texas Blackland Prairies, yellow = East Central Texas Plains).

Figure 2. Map showing the 64 study sites and elevation gradients across the Trinity and Brazos basins and the three ecoregions within the SAP.

Figure 3. Spatial distribution of dominant land-cover classes among the 26 study watersheds (NLCD 2001).

DATA ANALYSES

We followed the analysis framework outlined by King and Richardson (2003) and the aforementioned EPA Region 6 study (King et al. 2009; Appendix B) to identify variables that were candidate indicators of nutrient-related reductions in biological integrity. Nutrient and response variable data were graphically evaluated to initially screen variables and data sets for relationships that could be reasonably analyzed using threshold statistical techniques, as biological responses to nutrients were likely to be nonlinear and heteroscedastic. Conditional dot plots were used to examine distributions of variables among ecoregions, whereas lattice scatterplots were used to visualize and contrast stressor-response relationships.

We estimated potential threshold responses of univariate biological variables (e.g., periphyton nutrient ratios, chlorophyll a, macrophyte cover, etc) to numerical levels of nutrients or nutrient-related stressors using nonparametric changepoint analysis (nCPA), a technique explicitly designed for detecting threshold responses using ecological data (King and Richardson 2003, Qian et al. 2003). This analysis is based on the fact that structural change in an ecosystem may result in a change in both the mean and the variance of an ecological response variable used to indicate a threshold. When observations are ordered along an environmental variable (gradient), a changepoint is simply the value that separates the data into the two groups that have the greatest difference in means and variances. This can also be thought of as the degree of within-group variance relative to the between group variance, or *deviance* (D). Analytically, the nCPA examines every point along the stressor gradient and seeks the point that maximizes the reduction in deviance.

There is one particular value of the predictor y (e.g, TP) that maximizes the reduction in deviance in the response data (in this case, the selected biological responses); however, there is uncertainty associated with that value. It is unlikely that any one value of the predictor (e.g., TP) is the only value that could represent a changepoint. In reality, depending on the acuteness of the biological change in response to TP, several observations of TP could represent the changepoint, each with varying probabilities. Thus, to assess the risk associated with particular levels of TP, nCPA incorporates estimates of uncertainty in the changepoint (King and Richardson 2003). These estimates are calculated using a bootstrap simulation. This simulation resamples (with

replacement) the original dataset and recalculates the changepoint with each simulation. Bootstrap simulations are repeated 1,000 times. The result is a distribution of changepoints that summarizes the uncertainty among multiple possible changepoints. This uncertainty is expressed as a cumulative threshold frequency based on the relative frequency of each changepoint value in the distribution.

Multivariate algal and fish species abundance data were handled differently than the univariate biological data. First, important differences (gradients) in species composition and environmental correlates of those gradients were identified using non-metric multidimensional scaling (nMDS). NMDS is a distance based procedure that ordinates study units based on rank dissimilarities (Minchin 1987, Clarke 1993, Legendre and Legendre 1998). We used Bray-Curtis dissimilarity (BCD) as the distance measure, a coefficient that has been repeatedly demonstrated to be robust for ecological community data (Faith and Norris 1989). A two-dimensional solution was used for all analyses as stress values (a measure of agreement between BCDs and the configuration of the ordination) were relatively low and did not substantially decrease when additional axes were included in ordinations. Before running ordinations on the data sets, algae or fish species occurring at only two sites (algae) and one site (fish) within a data set were excluded, and abundances were log transformed. Algae and fish data matrices were analyzed separately. Variables from the watersheds and environmental measurements with high skewness (> 1) were also log transformed to improve linear relationships with the ordinations. Ordinations were performed in PC-Ord version 5.20 (MjM Software, Gleneden Beach, OR, U.S.A.).

We used rotational vector fitting to relate environmental and watershed variables to gradients in algal and fish community composition quantified by the NMS ordinations (Faith and Norris 1989). Vector fitting was used to find the direction of the maximum correlation for each environmental variable. Significance ($P \le 0.05$) of each environmental vector was estimated using 1,000 random permutations of the data. Vector fitting was performed using the ECODIST package in R version 2.5.1 (© 2007, The R Foundation for Statistical Computing).

To estimate species thresholds to nutrients or other stressors identified in the ordinations, we employed a new analytical approach, Threshold Indicator Taxa ANalysis (TITAN; King and

Baker), with the goals of (1) exploring and identifying abrupt changes in both the occurence frequency and relative abundance of individual taxa along nutrient gradients, (2) quantifying uncertainty associated with both observed distributions of each taxon and the broader sample, and (3) estimating the relative synchrony of those changes as a non-parametric assessment of a community threshold. Current statistical methods used for grouping samples and detecting community ecological thresholds are not developed for distinguishing responses of individual taxa with low occurrence frequencies or highly variable abundances (Dufrêne and Legendre 1997, Brenden et al. 2008, Andersen et al. 2008). Some methods assume a linear, univariate response along all or part of an environmental gradient (e.g., Toms and Lesperance 2003), whereas others focus solely on aggregate, community-level dissimilarity (e.g., De'Ath 2002, King et al. 2005) or species turnover between samples (i.e., beta-diversity). Noisy, non-linear, and poorly distributed occurrences are typical properties of the vast majority of taxa in multivariate community data matrices (McCune and Grace 2002). Multivariate or multi-metric analysis can obscure distinct responses of taxa subsets in a community data set, especially if both predominant and rare species do not respond in a similar fashion or focal species do not respond as expected. TITAN circumvents these problems.

TITAN represents a combination and extension of change-point and indicator species analysis. In TITAN, we use normalized indicator species taxa scores (z) to identify the value of a continuous variable, x, resulting in the optimal partitioning of sample units, such that the indicator score is maximized either for individual taxa or the additive response of all normalized indicator z -scores at the community level. Negatively responding taxa (z–) are distinguished from those responding positively (z+) to yield taxa-specific change-point distributions as well as cumulative responses of declining [sum(z–)] and increasing [sum(z+)] subsets of the community. Resampling procedures are used to measure both indicator reliability and purity, and to assess estimate uncertainty surrounding the existence of community change-points.

TITAN analysis was performed on the same species data sets as in the ordinations using logtransformed abundance data. Predictors included important nutrient variables identified from the environmental vector fitting analysis. TITAN was conducted in R version 2.5.1 (© 2007, The R Foundation for Statistical Computing) using the custom package TITAN written by M. E. Baker and R. S. King (Baker and King, in revision; King and Baker, in revision).

RESULTS AND INTERPRETATION

Comparison of BU and TCEQ TP and TN laboratory methods

Baylor and TCEQ total phosphorus (TP, ug/L) data corresponded closely above the TCEQ lab method detection limit (LOD) of 50 ug/L (Figure 4). Importantly, 34 of the 64 sites had TP concentrations below the TCEQ LOD, whereas all sites fell above the BU lab MDL of 3.6 ug/L (Appendix C, BU TP method). This result is particularly significant given the results of King et al. (2009; Appendix B) and new results reported in this document that provide compelling evidence of numerous biological changes in response to TP concentrations above 20 ug/L, a level well below the TCEQ LOD.

Figure 4. Distribution of surface water TP (ug/L) values among ecoregions (29=Cross Timbers, 32=TX Blackland Prairies, 33=E.Central.TX Plains) and analytical methods (BU=Baylor, TCEQ). The main panel (right) shows that above the TCEQ LOD of 50 ug/L, the two methods match quite well (r2=0.90, close to 1:1 correspondence), but over half of the streams in the study area fell below the TCEQ LOD. The two small panels (left) show that most of samples that fell below the TCEQ LOD (red line) were in Ecoregions 29 and 32.

The BU and TCEQ results for total nitrogen (TN) corresponded quite well for most of the distribution of values (Figure 5; $r^{2}=0.91$). Two discrepancies between methods were evident: 1) variance in the TCEQ TN data began to increase at the low end of the distribution, and 2) TCEQ values were consistently above the 1:1 line between methods. Both of these were likely due to the way the TCEQ TN value was computed in this report. TCEQ measures TN as total Kjeldahl nitrogen + nitrite-nitrate-N + ammonia-N, each with its own method and LOD. Baylor (BU) converts all forms of nitrogen by digestion (Appendix D) to nitrate-N and measures it with one method. Because some of the nitrogen components in the TCEQ methods fell below the method LOD, we assumed that the LOD was the measured value (we could not assume that it was zero), thus the sum of the nitrogen parameters typically included a LOD value that artificially elevated the TN estimate. It appears that, except for low levels of TN, the TCEQ and BU TN methods yield similar results and the TCEQ LODs may not be an important source of error in TN estimation.

Figure 5. Distribution of surface water TN (ug/L) values among ecoregions (29=Cross Timbers, 32=TX Blackland Prairies, 33=E.Central.TX Plains) and analytical methods (BU=Baylor, TCEQ).

Surface-water TN and TP (hereafter, BU lab data for these two analytes) were positively correlated among the 38 sites in the Cross Timbers (Ecoregion 29) and the 15 sites in the East Central Texas Plains (Ecoregion 33), but no relationship was evident among the 11 sites from the Blackland Prairies (Ecoregion 32; Figure 6).

Figure 6. Scatterplots of TN vs. TP among the 3 ecoregions.

Ecoregion 29 had a wide range of TN and TP values, spanning a gradient from <10 and <100 ug/L to >2,000 and >15,000 ug/L TP and TN, respectively (Figure 6, top panel). There also were sites, particularly at low levels of TP, that tended to have relatively high concentrations of TN, which would potentially be important for evaluating whether P or N were more responsible for biological changes, if any were evident.

Ecoregion 32 had a much narrower range of TP than Ecoregion 29, with a few values near 20 ug/L and none above 500 ug/L TP (Figure 6, middle panel). With only 11 sites, and only 2 of those in the Brazos basin, coupled with the narrow range of TP values, statistical analysis of biological responses to nutrient gradients would yield results that would be uncertain and more likely to be confounded by other variables or outliers.

Ecoregion 33 had an even narrower of TN and TP values than Ecoregion 32, which is undesirable for characterization of biological responses to nutrients (Figure 6, bottom panel). All of the TP values in Ecoregion 33 were > 40 ug/L, much higher than the biological thresholds observed by King et al. (2009; Appendix B). Low sample size (n=15) likely resulted in an insufficient characterization of the distribution of nutrient levels in Ecoregion 33.

RESULTS AND INTERPRETATION, CONTINUED

Periphyton nutrient content across ecoregions

Periphyton from rocks (Ecoregion 29) and sand/mud (Ecoregions 32, 33) had considerably different distributions of nutrient ratios (C:P, C:N, N:P, Figure 8). Not surprisingly, there was a much larger difference in ratios between the bulk and OM fractions in the sand/mud samples than rock samples, likely because of the much higher proportion of sediment to OM in these samples.

Figure 7. Photograph of a subsample of homogenized periphyton suspended in water (middle tube) following laboratory processing (bulk, or unfractionated periphyton), and four tubes containing aliquots of periphyton that were suspended in colloidal silica and centrifuged to separate the organic matter (algae, bacteria, detritus, fungi) from heavier, mostly inorganic particles (silt, clay, sand). The lighter organic material is pulled to the top of the suspension, whereas the sediment is pulled to the bottom during the centrifugation process. Following centrifugation, the organic fraction is removed using a pipettor, dried, pulverized, and analyzed for total carbon, nitrogen and phosphorus. The unfractionated bulk periphyton sample is dried, pulverized, and analyzed in the same manner but without separation from inorganic particles. See Appendix B for details.

Figure 8. Distribution of C:P, N:P, and C:N ratios among streams in Ecoregions 29, 32, and 33 and between bulk and OM fractions of periphyton.

Rock periphyton (Ecoregion 29) nutrient ratios were strongly, and nonlinearly, related to surfacewater nutrient concentrations (Figure 9, 10). Periphyton C:P and N:P ratios declined sharply with small increases in TP. The difference between OM C:P ratios and bulk C:P ratios was very high for periphyton in streams with low levels of TP, but rapidly diminished with TP enrichment. This implied that the bulk periphyton, which contained both sediment and the exopolysaccharide bacterial matrix, was storing as much phosphorus as the cellular organic matter (algae, fungi, bacteria). This was consistent with results of King et al (2009; Appendix B), reinforcing the strong connection between surface-water enrichment and rapid uptake, storage, and recycling of nutrients, particularly phosphorus, in the periphyton.

Figure 9. Scatterplots of periphyton C:P ratios (bulk, OM, and OM minus bulk) in response to surface-water TP across the three ecoregions.

Unfortunately, little of the variance in sand/mud periphyton ratios corresponded to surface-water nutrient concentrations (Figure 9, 10). Sand/mud C:P, C:N, and N:P ratios were unrelated to surface-water TP or TN in Ecoregion 32. There was a subtle relationship between C:P ratios and TP in Ecoregion 32, but the pattern was noisy and interpretation was difficult with so few samples.

Figure 10. Scatterplots of periphyton N:P ratios (bulk, OM, and OM minus bulk) in response to surface-water TP across the three ecoregions.

RESULTS AND INTERPRETATION, CONTINUED

Surface-water and periphyton chlorophyll across ecoregions

Surface-water chlorophyll-a increased sharply in response to TP and TN in Ecoregion 29 (Figure 11, TP results only). Most of the sites with values below detection limits for chlorophyll were at low levels of TP. This pattern was not clear in Ecoregion 32 and 33, but was confounded by sample size and gradient length.

Periphyton chlorophyll-a per unit area trended toward a slight increase in Ecoregion 29, but was very noisy. However, the ratio of chlorophyll a to AFDM (ash-free dry mass) increased with TP, reflecting a shift from more calcareous periphyton to a community comprised of more filamentous and colonial green algae (King et al. 2009; Appendix B). Periphyton chlorophyll appeared to decline in response to TP in Ecoregion 32, whereas no relationship was evident in Ecoregion 33.

Figure 11. Scatterplots of chlorophyll-a (ug/L, water), chlorophyll-a (mg/m2, periphyton), and the ratio of periphyton chlorophyll-a to AFDM (mg/g) across the three ecoregions.

RESULTS AND INTERPRETATION, CONTINUED

Estimation of thresholds for univariate biological indicators, Ecoregion 29

Qualitative results revealed that insufficient sample sizes and noisy data rendered threshold analysis in Ecoregions 32 and 33 to be impractical. However, the large number of sites, graphically obvious nonlinear changes in several variables, and wide range of nutrient concentrations in Ecoregion 29 was suitable for statistical analysis of thresholds.

Surface-water chlorophyll-a and nonfiltrable residue showed very similar responses to TP in Ecoregion 29 (Figure 12; note that outlier for both variables did not influence the changepoint estimate). Both were near or below detection limits at TP<25 ug/L, showed a sharp, significant increase above 25 ug/L TP (Table 1). Both variables also increased significantly above a TN threshold of ~350 ug/L (Table 1).

Figure 12. Results from nonparametric changepoint analysis using **surface-water TP** as a predictor of threshold changes in **surface-water chlorophyll-a**, **nonfiltrable residue**, **and filterable residue** in **Ecoregion 29**. Each blue dot represents one of the 38 sites sampled in summer 2008. The gray vertical line is the observed TP threshold (the level of TP resulting in the greatest difference in the response variable to the left and right of that value). The dotted red line is the cumulative threshold frequency, an estimate of uncertainty based on 1,000 bootstrap samples of the data (see King and Richardson 2003). The cumulative threshold frequency illustrates the range of possible threshold values; different quantiles of this distribution can be interpreted as confidence intervals around the observed threshold. See Table 1 for summary of the corresponding statistical results.

Total filtrable residue also increased significantly with increasing TP and TN (Figure 12; TP results only). However, its threshold level of TP and TN were less certain (Table 1).

Perphyton C:P, N:P, and C:N ratios sharply declined in response to TP (Table 1, Figure 13). Periphyton C:P (bulk) and C:P (OM) both declined significantly at <20 ug/L (Table 1, Figure 13), reinforcing periphyton C:P ratios as a very sensitive, robust indicator of nutrient enrichment in Cross Timber streams (King et al. 2009; Appendix B). The bulk samples also appeared to be nearly as sensitive to TP as the OM samples.

Figure 13. Results from nonparametric changepoint analysis using **surface-water TP** as a predictor of threshold changes in **periphyton variables** in **Ecoregion 29**. Each blue dot represents one of the 38 sites sampled in summer 2008. The gray vertical line is the observed TP threshold (the level of TP resulting in the greatest difference in the response variable to the left and right of that value). The dotted red line is the cumulative threshold frequency, an estimate of uncertainty based on 1,000 bootstrap samples of the data (see King and Richardson 2003). The cumulative threshold frequency illustrates the range of possible threshold values; different quantiles of this distribution can be interpreted as confidence intervals around the observed threshold. See Table 1 for summary of the corresponding statistical results.

					Bootstrap th	reshold qua			
	-	Response >	Threshold		100/				
Predictor	Response	threshold	(obs)	P value	10%	50%	90%	Mean <obs< td=""><td>Mean>obs</td></obs<>	Mean>obs
Total N (ug/L)	AFDM_M2	ns	280.17	0.5335	277.17	462.50	1661.17	1.36	1.08
Total N (ug/L)	CHLA_UGL	Increase	362.00	0.0010	338.83	374.00	487.83	1.10	8.21
Total N (ug/L)	CHLA:AFDM	Increase	3246.67	0.0043	685.95	1660.00	2786.67	1.61	5.21
Total N (ug/L)	CHLA_M2	ns	3246.67	0.0665	271.00	1140.50	2786.67	1.53	5.98
Total N (ug/L)	C:N (OM)	Decline	440.83	0.0206	280.17	440.83	1143.17	21.23	15.24
Total N (ug/L)	C:N (BULK)	Decline	440.83	0.0061	277.17	440.83	511.00	21.71	14.41
Total N (ug/L)	C:N OM-BULK	ns	1891.67	0.2213	261.83	468.25	1891.67	-0.38	3.01
Total N (ug/L)	C:P ALG	Decline	362.00	0.0004	277.17	328.17	377.58	270.93	167.78
Total N (ug/L)	C:P BULK	Decline	266.00	0.0029	263.83	384.67	918.17	472.70	219.39
Total N (ug/L)	C:P OM-BULK	Increase	266.00	0.0186	263.83	284.50	1891.67	-192.74	-36.83
Total N (ug/L)	EMBEDDED	ns	420.17	0.0506	280.17	420.17	918.17	25.78	45.41
Total N (ug/L)	TFILRESI	Increase	1891.67	0.0039	440.83	1016.00	1891.67	314.00	528.57
Total N (ug/L)	MACRPHYT	ns	362.00	0.1196	280.17	362.00	800.17	4.24	0.68
Total N (ug/L)	MCRPH_AB	ns	362.00	0.0607	295.67	374.00	918.17	0.54	0.15
Total N (ug/L)	MICRALG	ns	800.17	0.0630	295.67	792.67	807.67	9.86	0.41
Total N (ug/L)	MUDSILT	Increase	328.17	0.0318	318.83	337.08	918.17	0.27	12.19
Total N (ug/L)	NFILRESI	Increase	328.17	0.0051	318.83	338.83	918.17	0.25	1.02
Total N (ug/L)	N:P (OM)	ns	362.00	0.0615	238.83	362.00	414.33	13.72	10.91
Total N (ug/L)	N:P (BULK)	Decline	261.83	0.0104	251.83	423.17	1891.67	21.39	13.08
Total N (ug/L)	N:P OM-BULK	ns	2393.33	0.0560	261.83	445.83	2285.00	-3.87	3.31
Total P (ug/L)	AFDM_M2	ns	368.33	0.3764	12.44	69.78	368.33	1.23	0.90
Total P (ug/L)	CHLA_UGL	Increase	26.78	0.0003	24.00	26.78	26.78	1.28	10.65
Total P (ug/L)	CHLA:AFDM	Increase	125.08	0.0291	17.03	125.08	303.10	0.10	0.43
Total P (ug/L)	CHLA_M2	ns	770.33	0.3042	14.27	40.73	665.00	1.60	2.99
Total P (ug/L)	C:N (OM)	Decline	30.18	0.0124	16.60	29.00	55.85	20.94	14.56

Table 1.. Results of nonparametric changepoint analysis using nutrients and nutrient-related predictors of threshold responses in fish community indicators of biological integrity in Ecoregion 29. See figures 12 through 13 for graphical display of some of these results.

Total P (ug/L)	C:N (BULK)	Decline	21.43	0.0014	19.05	24.00	54.50	22.88	14.29
Total P (ug/L)	C:N OM-BULK	ns	932.17	0.1869	13.42	26.78	703.67	-0.30	3.81
Total P (ug/L)	C:P ALG	Decline	19.05	0.0002	10.89	19.05	28.95	274.22	166.07
Total P (ug/L)	C:P BULK	Decline	18.23	0.0004	17.77	18.32	55.85	454.67	188.74
Total P (ug/L)	C:P OM-BULK	Increase	52.08	0.0030	17.03	30.18	59.97	-129.82	33.50
Total P (ug/L)	EMBEDDED	Increase	21.43	0.0106	16.65	21.43	30.18	22.00	47.03
Total P (ug/L)	TFILRESI	Increase	77.03	0.0002	63.10	77.03	471.39	284.89	522.00
Total P (ug/L)	MACRPHYT	ns	26.78	0.2288	16.18	26.78	69.78	3.45	0.64
Total P (ug/L)	MCRPH_AB	ns	26.78	0.0909	16.18	26.78	69.78	0.47	0.13
Total P (ug/L)	MICRALG	ns	15.30	0.1400	15.12	25.20	598.33	13.33	4.54
Total P (ug/L)	MUDSILT	Increase	24.22	0.0088	23.02	24.22	25.35	0.67	14.07
Total P (ug/L)	NFILRESI	Increase	24.22	0.0003	22.38	24.22	26.78	0.24	1.17
Total P (ug/L)	N:P (OM)	Decline	10.89	0.0309	10.89	14.10	48.70	16.26	11.36
Total P (ug/L)	N:P (BULK)	Decline	52.08	0.0020	15.12	31.97	63.10	17.55	9.58
Total P (ug/L)	N:P OM-BULK	Decline	52.08	0.0048	17.03	55.85	125.08	-5.55	2.10

Several other variables showed significant changes that corresponded to TP and TN (Table 1). Sedimentation variables (substrate embeddedness, mud-silt cover) both increased sharply at levels of TP and TN that also corresponded to significant water quality and biological changes (chlorophyll-a, periphyton C:P, filtrable residue). These sedimentation indicators were shown by Winemiller et al (2009) to correspond with increasing cover of pasture in the study watersheds, suggesting that pasture may be an important driver of both elevated nutrients and sediment problems in Ecoregion 29.

Variables that were indicators of submersed macrophyte cover (MCRPH_AB, MACRPHYT) and microalgae/biofilm cover (MICRALG) were expected to decline in response to TN and TP. However, they were too variable in their responses to be statistically significant. We expected these to decline because of their consistent response to TP in the study by King et al. (2009; Appendix B), which included an assessment of these variables in June 2008 at 26 of these 38 streams. In that event, macrophytes and biofilm thickness both significantly declined in response to TP levels > 20 ug/L. King et al. (2009) study used the 100-point transect method for estimating reach-scale cover of macrophytes, filamentous macroalgae, biofilm thickness, substrate, and sediment film thickness and found this approach to yield an excellent characterization of these variables. This current study used the TCEQ physical habitat assessment method, which was constrained to just 5 or 6 cross-sectional transects. Because of the high degree of spatial heterogeneity in the length of these reaches, we suggest that these transects are more likely to under or over estimate cover of these variables, and this may explain why these variables were not as effective as the field survey indicators of nutrient enrichment in the King et al. (2009) study.

RESULTS AND INTERPRETATION, CONTINUED

Multivariate analysis of algal species composition among ecoregions

Ordination of sites based on the density of different algal species showed that periphyton communities growing on rocks (Cross Timbers) was clearly different than communities growing on sand/mud (Blackland Prairies, East Central Texas Plains; Figure 14-16). This was not unexpected. However, the ordination also revealed that algae growing on mud/silt in the Blackland Prairies was significantly different than East Central Texas Plains, with very little overlap (Figure 14; MRPP, p<0.01). This implies that ecoregional differences observed for fish (Winemiller et al. 2009) were also true for algae, thus analyses based on taxonomic composition will need to be stratified by ecoregion for both of these indicator groups.

Figure 14. Nonmetric multidimensional scaling (nMDS) ordination of algal species composition among the three ecoregions.

Figure 15. Nonmetric multidimensional scaling (nMDS) ordination of algal species composition between the two substrate types.

Figure 16. Nonmetric multidimensional scaling (nMDS) ordination of algal species composition among the two major river basins.

Algal species composition did not differ by the major river basins (Brazos and Trinity), however. Trinity sites were mostly enclosed within the cluster of Brazos sites in the ordination, or vice versa, regardless of substrate or ecoregion. This is important because it suggests that taxonomic composition metrics likely do not need to be stratified by basin for analyses or index development. Ordination of algal species composition within Ecoregion 29 revealed a strong gradient along axis 1 that was highly correlated with numerous nutrient and nutrient-related environmental variables (Figures 17-19). Sites with low TP, TN, pasture, outfalls, sediment, and chloride and high periphyton C:N, C:P, and N:P ratios were grouped on the left side of the ordination, whereas sites with high values for these stressors were consistently grouped on the right side. This result is very similar to 2006 and 2007 data reported in King et al. (2009; Appendix B).

Ordination of Periphyton Species Composition, Ecoregion 29

Increasing TP, TN, outfalls, pasture, chloride, mudsilt Decreasing periphyton C:P, N:P, C:N ratios

Figure 17. Nonmetric multidimensional scaling ordination of algal species composition among the 38 sites in Ecoregion 29 in summer 2008. Abundance data (no. of cells/cm²) was $log_{10}(x+1)$ transformed prior to analysis. Bray-Curtis distance was used as the dissimilarity metric. Distances between sites in the ordination space are proportional to taxonomic dissimilarity (near=similar, far=dissimilar). In each figure, the red arrows (vectors) represent the direction and magnitude of significant (p<0.05) correlations between environmental variables and algal species composition. See Appendices A1-3 for full variable names.

Figure 18. Nonmetric multidimensional scaling ordination of algal species composition among the 38 sites in Ecoregion 29 in summer 2008. The ordination diagram is identical to Figure 17, except that site symbols are scaled in proportion to measured values of surface-water TP, periphyton C:P (bulk), chlorophyll-a (water), and total filtrable residue (water).

Figure 19. Nonmetric multidimensional scaling ordination of algal species composition among the 38 sites in Ecoregion 29 in summer 2008. The ordination diagram is identical to Figure 17, except that site symbols are scaled in proportion to measured values to substrate embeddedness, outfalls (permitted mgd in watershed), mud-silt cover (%), and pasture cover (% of watershed).
Algal species composition was not related to any nutrient or nutrient-related variable in Ecoregions 32 or 33 (Figure 20, 21). Even with the small sample sizes, algal taxonomic composition should have corresponded more closely to surface-water and periphyton chemistry than it did in these data sets. This implied that sand/mud periphyton samples were too variable to use reliably as nutrient indicators, and that alternative substrates (wood, artificial) should be considered for biological assessment in these soft-bottomed stream ecosystems.

Ordination of Algal Species Composition, Ecoregion 32 No significant relationships with nutrients

Figure 20. Nonmetric multidimensional scaling ordination of algal species composition among the 11 sites in Ecoregion 32 in summer 2008.

Ordination of Algal Species Composition, Ecoregion 33 No significant relationships with nutrients

Figure 21. Nonmetric multidimensional scaling ordination of algal species composition among the 15 sites in Ecoregion 33 in summer 2008.

RESULTS AND INTERPRETATION, CONTINUED

Threshold responses of algal species to nutrient gradients in Ecoregion 29 Thirty-one algal species declined significantly in response to surface-water TP (Figure 22; Appendix A6). Most of these taxa declined between 15 and 25 ug/L TP. The TP level most likely to result in a community level decline (sum z-; Table 2) was 21 ug/L. Bootstrap confidence limit estimates suggested that this threshold may have been as low as 12 ug/L and highly likely to occur if TP exceeded 28 ug/L (Table 2).

TITAN also detected 36 algal species that proliferated rapidly with increasing TP in the wake of declines of other species (Figure 22; Appendix A6). Most of these species increased between 20 and 50 ug/L TP, but a few did not begin to appear until TP exceeded 500 ug/L (Figure 22). The community level threshold for increasing (positive responding) taxa was 40 ug/L TP (Table 2).

Fifteen and 28 taxa declined in response to TN and chloride, respectively (Figure 24; Appendix A6, Table 2). Some of these taxa differed from those that declined in response to TP, but the magnitude of the aggregate community response was lower than that of TP. Community-level threshold declines in algal species composition were most likely at 320 ug/L TN and 20 ug/L chloride (Table 2).

Most of the same taxa that declined in response to increasing TP declined in response to decreasing C:P ratios in the periphyton (Figure 25, Appendix A6). The consistency of this response is important because it demonstrates that changes in the amount of phosphorus in the periphyton itself results in sharp community changes that mirror the changes in response to surface-water TP. The level of C:P in the periphyton that led to the greatest overall decline in algal species was below 225 for OM samples and 335 for bulk periphyton.

The percentage cover of pasture in watersheds and the permitted volume of outfalls in watersheds (millions of gallons per day) both resulted in similar threshold declines in algal species as nutrients and nutrient related stressors (Figures 26, 27; Appendix A6). These variables also corresponded to sharp increases in taxa not found at sites with low levels of nutrients, sediment, and chloride (Figures 26, 27; Appendix A6). Watersheds exceeding 3.3% pasture cover and 0.31 MGD of permitted outfalls had the greatest overall declines in algal species, whereas pollution-indicator species proliferated in watersheds with > 7% pasture and >0.31 MGD of outfalls (Table 2).

Figure 22. Results of Threshold Indicator Taxa ANalysis (TITAN) using surface-water TP a a predictor of threshold changes in individual algal species in Ecoregion 29 in summer 2008. Taxa are classified as either negative (z-) or positive (z+) threshold indicators based on the direction of response to TP. The observed TP threshold value (colored symbols) correspond to each taxon deemed to change significantly. Taxon IDs (see Appendix A5) are shown on the left (negative indicators) and right (positive indicators) y-axes, in rank order of their TP thresholds. Line segments around each symbol are 90% confidence intervals around the TP threshold. Symbol sizes correspond to the indicator score.

Figure 23. Results of Threshold Indicator Taxa ANalysis (TITAN) using surface-water TP a a predictor of threshold changes in community-level algae abundance data in Ecoregion 29 in summer 2008. Community responses are separated between the aggregate response of negative (sum(z-)) and positive (sum(z+)) threshold indicator taxa. The TP value resulting in the highest sum(z) value is the point in which the greatest cumulative negative (z-) or positive (z+) occurs. Bootstrapping is used to estimate the cumulative threshold frequency for negative (green) and positive (red) responses, respectively. See Table 2 for community level (sum(z)) thresholds.

Figure 24. Results of Threshold Indicator Taxa ANalysis (TITAN) using surface-water TN (left panel) and chloride (right panel) as predictors of threshold changes in individual algal species in Ecoregion 29 in summer 2008. Taxa are classified as either negative (z-) or positive (z+) threshold indicators based on the direction of response to these predictors. The observed TN or chloride threshold value (colored symbols) correspond to each taxon deemed to change significantly, and the size of the symbol corresponds to the magnitude of the response. Taxon IDs (see Appendix A5) are shown on the left (negative indicators) and right (positive indicators) y-axes, in rank order of their thresholds. Line segments around each symbol are 90% confidence intervals around each observed threshold. Symbol sizes correspond to the indicator score.

Figure 25. Results of Threshold Indicator Taxa ANalysis (TITAN) using periphyton C:P bulk (left panel) and periphyton C:P OM (right panel) as predictors of threshold changes in individual algal species in Ecoregion 29 in summer 2008. Taxa are classified as either negative (z-) or positive (z+) threshold indicators based on the direction of response to the C:P ratios in the periphyton. The observed C:P threshold value (colored symbols) correspond to each taxon deemed to change significantly, and the size of the symbol corresponds to the magnitude of the response. Taxon IDs (see Appendix A5) are shown on the left (negative indicators) and right (positive indicators) y-axes, in rank order of their C:P thresholds. Line segments around each symbol are 90% confidence intervals around the C:P threshold. Symbol sizes correspond to the indicator score.

Figure 26. Results of Threshold Indicator Taxa ANalysis (TITAN) using % pasture cover in watersheds as a predictor of threshold changes in individual algal species in Ecoregion 29 in summer 2008. Taxa are classified as either negative (z-) or positive (z+) threshold indicators based on the direction of response to % pasture. The observed % pasture threshold value (colored symbols) correspond to each taxon deemed to change significantly. Taxon IDs (see Appendix A5) are shown on the left (negative indicators) and right (positive indicators) y-axes, in rank order of their % pasture thresholds. Line segments around each symbol are 90% confidence intervals around the % pasture threshold. Symbol sizes correspond to the indicator score.

Figure 27. Results of Threshold Indicator Taxa ANalysis (TITAN) using outfalls (mgd) in watersheds as a predictor of threshold changes in individual algal species in Ecoregion 29 in summer 2008. Taxa are classified as either negative (z-) or positive (z+) threshold indicators based on the direction of response to outfalls. The observed outfall (mgd) threshold value (colored symbols) correspond to each taxon deemed to change significantly. Taxon IDs (see Appendix A5) are shown on the left (negative indicators) and right (positive indicators) y-axes, in rank order of their outfall thresholds. Line segments around each symbol are 90% confidence intervals around the outfall threshold. Symbol sizes correspond to the indicator score.

Table 2. Community-level results from Threshold Indicator Taxa Analysis (TITAN) on **algal species** composition from **Ecoregion 29** in response to water and periphyton nutrient concentrations, sedimentation, outfalls, pasture, and chloride. Thresholds (*Obs.*) are based on the value of the predictor resulting in the greatest aggregate decrease (sum(z-)) or increase (sum(z+)) in the frequency and abundance of taxa in the community. Taxa responses associated with lower nutrient or stressor conditions are shown in **bold.** The lower (*10%*), middle (*50%*), and upper (*90%*) quantiles of 1,000 bootstraps represent measures of uncertainty around the observed threshold.**Note that lower C:P values = higher P enrichment relative to organic carbon in the periphyton, thus taxa that "decrease" sharply in response to increasing <i>C:P are associated with higher levels of P-enrichment, whereas "increaser" taxa are associated with lower levels of P enrichment.* See previous figures for details.

				Bootstrap Threshold Quantiles		
	Threshold	Taxa response	Obs.			
	Indicator	> threshold	threshold	10%	50%	90%
TP (ug/L)	sumz-	Decline	21.43	12.44	19.68	28.95
	sumz+	Increase	40.73	28.95	40.73	932.17
TN (ug/L)	sumz-	Decline	384.67	225.33	271.00	462.50
	sumz+	Increase	440.83	402.50	462.50	5723.33
Periphyton C:P (OM)	sumz-	Decline	216.60	141.57	182.03	216.60
F J ··· (··)	sumz+	Increase	225.08	182.03	227.57	295.89
	541112			102000		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Periphyton C:P (bulk)	sumz-	Decline	159.00	95.50	165.95	245.12
	sumz+	Increase	335.81	178.01	191.55	438.57
Pasture (%)	sumz-	Decline	3.26	0.77	2.42	3.26
	sumz+	Increase	7.05	3.26	8.61	12.36
Outfalls (MGD)	sumz-	Decline	0.32	0.01	0.18	0.58
× ,	sumz+	Increase	0.32	0.18	0.58	5.69
Mud-silt (%)	sumz-	Decline	0.00	0.00	1.21	3.75
	sumz+	Increase	15.42	2.20	13.75	21.17
Chloride (mg/L)	sumz-	Decline	20.50	18.00	20.50	26.00
	sumz+	Increase	<u>31.0</u> 0	24.00	30.00	92.50

RESULTS AND INTERPRETATION, CONTINUED

Multivariate analysis of fish species composition among ecoregions

Winemiller et al (2009) thoroughly describe the relationships between fish communities, habitat variables, and watershed physiographic variables among ecoregions using the summer 2008 data set. Therefore, results presented here are limited to nutrient and nutrient-related variables not included in that report.

Fish community structure in Ecoregion 29 was strongly related to many nutrient and nutrientrelated variables (Figure 28). Sites with low TP, chloride, substrate embeddedness, mud-silt, chlorophyll-a, filtrable and nonfiltrable residue and high periphyton C:P, C:N, and N:P ratios were grouped on the left end of axis 1, the most important axis of community structure (Figures 28-30). Watershed outfalls and pasture also were significantly related to fish communities along this axis and suggested that both were potential drivers of these biological changes. These local and watershed variables were therefore selected as predictors of potential threshold changes in fish species and subsequent metrics based on combinations of fish species (see *Threshold responses of fish species to nutrient gradients in Ecoregion 29*, next section).

Fish communities in Ecoregion 32 and 33 were weakly related to a few nutrient or nutrientrelated variables (Figures 31, 32). Because of small sample sizes, insufficient sites with low levels of nutrients, and outliers, none of these relationships was sufficiently strong to be reliable or interpretable. However, these weak trends imply that watershed stressors such as outfalls, rowcrop, pasture, and impervious cover are likely influencing fish communities in these ecoregions, and that nutrient enrichment and sedimentation probably play a role in reduction of biological integrity in these stream ecosystems. Additional sites that fill gaps in the spatial distribution of sites in these ecoregions are needed to adequately evaluate biological responses to habitat, water quality, and watershed sources of abiotic stressors.

Ordination of Fish Species Composition, Ecoregion 29

Figure 28. Nonmetric multidimensional scaling ordination of fish species composition among the 38 sites in Ecoregion 29 in summer 2008. Abundance data was $log_{10}(x+1)$ transformed prior to analysis. Bray-Curtis distance was used as the dissimilarity metric. Distances between sites in the ordination space are proportional to taxonomic dissimilarity (near=similar, far=dissimilar). In each figure, the red arrows (vectors) represent the direction and magnitude of significant (p<0.05) correlations between environmental variables and fish species composition. See Appendices for full variable names.

Figure 29. Nonmetric multidimensional scaling ordination of fish species composition among the 38 sites in Ecoregion 29 in summer 2008. The ordination diagram is identical to Figure 28, except that site symbols are scaled in proportion to measured values of surface-water TP, periphyton C:P (bulk), microalgae cover, and total nonfiltrable residue (water).

Figure 30. Nonmetric multidimensional scaling ordination of fish species composition among the 38 sites in Ecoregion 29 in summer 2008. The ordination diagram is identical to Figure 28, except that site symbols are scaled in proportion to measured values of pasture (%), outfalls (mgd), mud-silt (%), and chloride (mg/L).

Ordination of Fish Species Composition, Ecoregion 32

Figure 31. Nonmetric multidimensional scaling ordination of fish species composition among the 11 sites in Ecoregion 32 in summer 2008. Abundance data was $log_{10}(x+1)$ transformed prior to analysis. Bray-Curtis distance was used as the dissimilarity metric. Distances between sites in the ordination space are proportional to taxonomic dissimilarity (near=similar, far=dissimilar). In each figure, the red arrows (vectors) represent the direction and magnitude of significant (p<0.05) correlations between environmental variables and fish species composition. See Appendices for full variable names.

Ordination of Fish Species Composition, Ecoregion 33

Figure 32. Nonmetric multidimensional scaling ordination of fish species composition among the 15 sites in Ecoregion 33 in summer 2008. Abundance data was $log_{10}(x+1)$ transformed prior to analysis. Bray-Curtis distance was used as the dissimilarity metric. Distances between sites in the ordination space are proportional to taxonomic dissimilarity (near=similar, far=dissimilar). In each figure, the red arrows (vectors) represent the direction and magnitude of significant (p<0.05) correlations between environmental variables and fish species composition. See Appendices for full variable names.

RESULTS AND INTERPRETATION, CONTINUED

Threshold responses of fish species to nutrient gradients in Ecoregion 29

TITAN revealed that four fish species significantly declined in response to surface-water TP (Figure 33; Appendix A7). Three of these species (CYPRVENU=*Cyprinella venusta*, blacktail shiner; ETHESPEC=*Etheostoma spectabile*, orangethroat darter; CAMPANOM=*Campostoma anomalum*, central stoneroller) had observed thresholds between 15 and 25 ug/L TP. The TP level most likely to result in a community level decline (sum z-) was 28 ug/L (Table 3).

Four fish species sharply increased in abundance and frequency of occurrence in sites with elevated TP: CYPRLUTR (*Cyprinella lutrensis*, red shiner), PIMEVIGI (*Pimephales vigilax*, bullhead minnow), LEPIOSSE (*Lepisosteus osseus*, longnose gar), and CARPCARP (*Carpiodes carpio*, river carpsucker) (Figure 33; Appendix A7). The community-level threshold for taxa that proliferated with TP enrichment was 30 ug/L (Table 3).

Most of these same species either declined or increased in response to periphyton C:P ratios, chloride, mud-silt cover, substrate embeddness, outfalls, and pasture (Table 3; Figure 34). Additional fish species that significantly declined in response to one or more of these stressors included *Fundulus notatus* (FUNDNOTA), *Lepomis gulosus* (LEPOGULO), *Notropis volucellus* (NOTRVOLU), *Moxostoma congestum* (MOXOCONG), and *Lepomis cyanellus* (LEPOCYAN) (Figure 34, Appendix A7).

Additional species that proliferated with increasing levels of nutrients or nutrient-related stressors included *Cyprinus carpio* (CYPRCARP), *Lythurus umbratilis* (LYTHUMBR), *Dorosoma cepedianum* (DOROCEPE), *Pylodictis olivaris* (PYLOOLIV), and *Pomoxis annularis* (POMOANNU) (Figure 34; Appendix A7). Most of these species are typically associated with turbid low gradient streams or reservoirs.

Figure 33. Results of Threshold Indicator Taxa ANalysis (TITAN) using surface-water TP as a predictor of threshold changes in individual fish species distributions in Ecoregion 29 in summer 2008.

Figure 34. Results of Threshold Indicator Taxa ANalysis (TITAN) using outfalls, chloride, mud-silt cover, and pasture as predictors of threshold changes in individual fish species distributions in Ecoregion 29 in summer 2008.

Table 3 Community-level results from Threshold Indicator Taxa Analysis (TITAN) on **fish** species composition from **Ecoregion 29** in response to TP, sedimentation, outfalls, pasture, and chloride. Thresholds (*Obs.*) are based on the value of the predictor resulting in the greatest aggregate decrease (sum(z-)) or increase (sum(z+)) in the frequency and abundance of taxa in the community. Taxa responses associated with lower nutrient or stressor conditions are shown in **bold.** The lower (*10%*), middle (*50%*), and upper (*90%*) quantiles of 1,000 bootstraps represent measures of uncertainty around the observed threshold.

				Bootstrap Threshold Quantiles			
	Threshold	Taxa response	Obs.				
Predictor	Indicator	> threshold	threshold	10%	50%	90%	
TP (ug/L)	sumz-	Decline	27.77	17.03	30.18	81.84	
	sumz+	Increase	30.18	24.22	34.18	69.78	
Mud-silt (%)	sumz-	Decline	0.92	0.00	7.25	16.04	
	sumz+	Increase	15.00	6.00	16.04	21.17	
Outfalls (MGD)	sumz-	Decline	2.16	0.02	0.80	3.25	
	sumz+	Increase	0.31	0.09	0.80	3.27	
Pasture (%)	sumz-	Decline	8.61	3.26	7.05	9.79	
	sumz+	Increase	3.26	2.81	7.05	12.07	
Chloride (mg/L)	sumz-	Decline	18.50	12.50	21.50	60.50	
	sumz+	Increase	35.00	13.50	24.00	72.50	

Based on these and results described in Winemiller et al. (2009), we evaluated five univariate variables as potential new fish metrics of nutrient or nutrient-related problems in streams of Ecoregion 29:

- Fish community index (nMDS Axis 1). Site values are scores along the primary axis of variation in fish community structure from non-metric multidimensional scaling ordination of the 38 sites in Ecoregion 29 during summer 2008. Low (negative) scores represent sites that are most dissimilar from sites with high levels of outfalls, pasture, nutrients, chloride, and sediment (high, positive scores on axis 1).
- Percent abundance of the key grazing herbivore (*Campostoma anomalum*, central stoneroller). *Campostoma* was found to decline significantly in response to pasture, outfalls, embeddedness, and mud-silt in Winemiller et al. (2009), and additionally to chloride, TP, and C:P periphyton in this study. *Campostoma* plays a fundamental role in stream ecosystem processes in these streams by grazing on periphyton, recycling nutrients, exporting sediment, and as a primary food resource for native predator fishes such as spotted bass (*Micropterus punctalatus*).
- Percent abundance of darters (*Etheostoma*). *Etheostoma spectabile* was the dominant benthic invertivore in clear-water, low nutrient streams in Ecoregion 29, but rapidly declined with increasing nutrient enrichment, sedimentation, chloride, and drivers of these stressors (outfalls, pasture). Other related species (*Percina* spp.) were too infrequently collected to determine statistical significance but likely were negatively affected by these stressors as well. Primarily riffle, crevice-dwelling fish, these fish are mechanistically linked to benthic processes in streams and are another key indicator of biological integrity in these ecosystems.
- Percent abundance of nutrient-intolerant cyprinids (*Cyprinella venusta, Notropis volucellus*). Blacktail shiners are common in most streams in Ecoregion 29, but their percent contribution to community structure clearly declined as nutrient enrichment and sedimentation increased. Mimic shiner was also sensitive to these stressors. Note that classification of "intolerant" here is independent of TCEQ or other tolerant/intolerant classifications.

Percent abundance of nutrient-tolerant cyprinids (*Cyprinella lutrensis, Pimephales vigilax*). Both of these species showed sharp increases in abundance with nutrient enrichment, as indicated by TITAN. Although these are native species and contribute positively to "number of native cyprinids", a metric used in the TCEQ IBI, these species are in fact very tolerant of pollution and benefit from human alterations to streams. Red shiners have been shown through historical analysis of Brazos River seine data (T. Bonner, unpublished data) to have markedly increased in abundance in the past 30-50 years while other native cyprinds have declined, a phenomenon coincident with dam construction and water quality declines in the mainstem Brazos. *Pimephales vigilax*, or bullhead minnow, is a close relative to the toxicological test organism *Pimephales promelas*, or fathead minnow, used because of its ease in reproduction and hardiness. Note that classification of "tolerant" here is independent of TCEQ or other tolerant/intolerant classifications.

Some of the other species found to be negative or positive threshold indicators by TITAN may also serve as stressor-specific metrics of biological integrity, but these responses need further evaluation.

Figures 35-39 and Table 4 illustrate that indeed these univariate metrics all significantly showed threshold responses to all of the stressors identified in the ordination and TITAN analyses.

Figure 35. Results on nonparametric changepoint analysis using surface water TP as a predictor of threshold responses in the four proposed new fish metrics of nutrient-related reduction in biological integrity in Ecoregion 29.

Figure 36. Results on nonparametric changepoint analysis using % pasture in the watershed as a predictor of threshold responses in the four proposed new fish metrics of nutrient-related reduction in biological integrity in Ecoregion 29.

Figure 37. Results on nonparametric changepoint analysis using mud-silt cover (%) as a predictor of threshold responses in the four proposed new fish metrics of nutrient-related reduction in biological integrity in Ecoregion 29.

Figure 38. Results on nonparametric changepoint analysis using outfalls (permitted discharege in MGD; not necessarily the actual discharge) as a predictor of threshold responses in the four proposed new fish metrics of nutrient-related reduction in biological integrity in Ecoregion 29.

Figure 39. Results on nonparametric changepoint analysis using surface water chloride as a predictor of threshold responses in the four proposed new fish metrics of nutrient-related reduction in biological integrity in Ecoregion 29.

Table 4. Results of nonparametric changepoint analysis using nutrients and nutrient-related predictors of threshold responses in fish community indicators of biological integrity in Ecoregion 29. See figures xx through xx for graphical display of most of these results.

					Bootstrap Threshold Quantiles				
		Response > obs.	Threshold					Mean	Mean >
Predictor	Fish metric	threshold	(obs.)	P value	10%	50%	90%	< obs.	obs.
Total phosphorus (ug/L) Total phosphorus	Darters (%)	Decline	19.68	0.0015	15.12	19.68	30.18	5.93	1.98
(ug/L)	Grazing herbivore (%)	Decline	24.22	0.0044	22.62	24.22	30.18	10.23	4.07
Total phosphorus (ug/L) Total phosphorus	Nutrient-intolerant cyprinids (%)	Decline	24.22	0.0061	17.03	24.22	30.18	24.43	15.20
(ug/L)	Community index (nMDS 1)	Increase	30.18	0.0041	17.03	25.20	55.15	-0.43	0.48
Total phosphorus (ug/L)	Nutrient-tolerant cyprinids (%)	Increase	52.08	0.0052	21.43	55.85	59.97	9.51	20.35
Periphyton C:P (bulk)	Darters (%)	Increase	178.01	0.0057	170.90	183.72	334.89	1.47	4.86
Periphyton C:P (bulk) Periphyton C:P	Grazing herbivore (%)	Increase	178.01	0.0159	142.56	178.01	334.10	3.60	8.89
(bulk)	Nutrient-intolerant cyprinids (%)	Increase	183.72	0.0180	95.50	183.72	368.01	14.89	22.87
Periphyton C:P (bulk) Periphyton C:P	Community index (nMDS 1)	Decline	178.01	0.0039	105.97	178.01	189.99	0.53	-0.39
(bulk)	Nutrient-tolerant cyprinids (%)	Decline	170.90	0.0096	95.50	173.06	313.72	19.53	9.57
Pasture (%)	Darters (%)	Decline	4.47	0.0023	2.11	4.47	5.45	5.09	1.39
Pasture (%)	Grazing herbivore (%)	Decline	3.75	0.0273	1.52	3.08	11.03	8.95	4.12
Pasture (%)	Nutrient-intolerant cyprinids (%)	Decline	10.87	0.0020	2.10	6.89	11.37	21.73	9.17

Pasture (%)	Community index (nMDS 1)	Increase	3.08	0.0024	2.42	3.08	6.93	-0.50	0.45
Pasture (%)	Nutrient-tolerant cyprinids (%)	Increase	3.08	0.0007	2.42	3.08	3.71	6.84	19.50
Embeddedness									
(%)	Darters (%)	Decline	12.50	0.0265	14.91	20.83	30.00	6.32	2.78
Embeddedness	~						• • • •		
(%) Each a d da du ana	Grazing herbivore (%)	Decline	18.33	0.0074	12.50	18.33	30.83	11.17	4.83
Embeddedness	Nutrient_intolerant cyprinids (%)	Decline	28 33	0.0137	17 50	30.00	17 92	23.68	15 37
Embeddedness	Nutrent-intolerant cyprintes (70)	Deenne	20.55	0.0157	17.50	50.00	<i>ч1.)2</i>	25.00	15.57
 (%)	Community index (nMDS 1)	Increase	20.83	0.0130	16.67	20.83	30.00	-0.52	0.30
Embeddedness	•								
(%)	Nutrient-tolerant cyprinids (%)	Increase	20.83	0.0190	15.83	20.83	32.50	7.67	16.91
Mud-silt (%)	Darters (%)	Decline	0.83	0.0484	5.00	6.25	10.63	4.72	2.40
Mud-silt (%)	Grazing herbivore (%)	Decline	6.00	0.0187	3.75	6.25	11.67	8.84	3.67
Mud-silt (%)	Nutrient-intolerant cyprinids (%)	Decline	1.50	0.0020	3.50	10.42	11.88	24.47	14.25
Mud-silt (%)	Community index (nMDS 1)	Increase	1.50	0.0025	2.00	6.25	10.63	-0.50	0.45
Mud-silt (%)	Nutrient-tolerant cyprinids (%)	Increase	1.50	0.0096	2.00	6.25	12.75	8.37	18.12
Outfalls (MGD)	Darters (%)	Decline	0.31	0.0030	0.22	0.38	0.93	5.22	1.65
Outfalls (MGD)	Grazing herbivore (%)	Decline	0.31	0.0071	0.22	0.38	0.93	9.55	3.77
Outfalls (MGD)	Nutrient-intolerant cyprinids (%)	Decline	0.31	0.0149	0.22	0.31	0.93	23.18	15.00
Outfalls (MGD)	Community index (nMDS 1)	Increase	0.31	0.0021	0.22	0.23	0.93	-0.49	0.49
Outfalls (MGD)	Nutrient-tolerant cyprinids (%)	Increase	0.31	0.0028	0.09	0.93	1.13	7.93	19.08
Chloride (mg/L)	Darters (%)	Decline	20.50	0.0091	15.50	20.00	49.00	5.19	2.01
Chloride (mg/L)	Grazing herbivore (%)	Decline	13.50	0.0029	12.00	17.00	24.00	12.36	4.89
Chloride (mg/L)	Nutrient-intolerant cyprinids (%)	Decline	13.50	0.0263	15.00	20.50	24.00	25.86	16.99
Chloride (mg/L)	Community index (nMDS 1)	Increase	13.50	0.0013	14.00	17.00	20.50	-0.91	0.28
Chloride (mg/L)	Nutrient-tolerant cyprinids (%)	Increase	13.50	0.0005	14.00	15.00	19.00	1.75	17.15

CONCLUSIONS AND RECOMMENDATIONS

The weight of evidence provided in this report, particularly when coupled with the 2-year EPA Region 6 study on nutrient criteria development (Appendix B), implies that nutrient enrichment is a very probable cause of numerous biological changes in streams in Ecoregion 29. Fine-sediment runoff from pastures and overgrazed riparian zones also appears to be stressor that covaries strongly with moderate levels of P enrichment, suggesting that sediment-bound P from pasture runoff is a potential source of enrichment. The highest levels of P enrichment are clearly associated with waste-water treatment plant outfalls. Streams with high volumes of effluent discharge host markedly different biota than relatively unenriched streams.

Specific findings of this study that have important implications for nutrient criteria development and biological assessment methods include the following:

- Because of the overwhelming evidence in this report and in King et al. (2009; Appendix B) of consistent biological changes in streams with > 20 ug/L TP, the current laboratory method used by TCEQ for determining total phosphorus (TP) should be modified to measure lower levels of TP than the current LOD of 50 ug/L. The BU method (Appendix C), which utilizes a Lachat Quik-chem 8500 flow-injection autoanalyzer with a 360 place autosampler, has a lab MDL of around 3.6 ug/L (recomputed based on each run) and has been used in numerous other labs across the country for detecting low levels of TP.
- The TCEQ method for computing total nitrogen based on the addition of nitrate-nitrite-N, ammonia-N and Kjeldahl N analytes yields results that are quite similar to the BU method of measuring total N in one analysis. However, at low levels of TN, the TCEQ method may overestimate TN if the LOD value for one or more of the component analytes is computed as part of the total. Most of the significant biological changepoints in response to TN were detected ranged from 261 to 440 ug/L, thus laboratory methods should ensure that levels at or below this range are within LODs.
- Periphyton nutrient content is a very robust and sensitive indicator of nutrient status in streams in Ecoregion 29, where limestone gravel, cobble, and bedrock are the dominant

substrates. It was also very strongly related to nonlinear changes in algal species composition and fish community structure. We recommend that periphyton C, N and P content be considered as an integrative measure of stream nutrient status, and a strong predictor of biological changes in hard-bottomed streams.

- However, in soft-bottom streams of Ecoregions 32 and 33, periphyton nutrient content measured from sand/mud substrate was highly variable and did not correspond well to surface-water nutrients or changes in algal species composition. We do not recommend continued evaluation of sand/mud periphyton in these systems as an indicator of nutrientrelated degradation, and suggest that alternative substrates such as wood or artificial substrates be considered in future studies.
- The existing TCEQ habitat assessment method that relies on 5 to 6 cross-sectional transects to assess stream habitat variables may not be sufficient for adequately characterizing cover of some important structural and functional elements of central Texas streams. Biofilm/microalgae thickness, submersed macrophyte cover, filamentous algae cover, substrate composition, and sediment film thickness on substrate are several metrics that were found to be responsive to TP enrichment by King et al. (2009; Appendix B). However, these variables were assessed using a whole-reach zig-zag transect with 100 points of measurement, which provided a more comprehensive characterization of these often patchy variables than the TCEQ cross-section approach. We compared similar metrics used in the HQI survey (June-August 2008) to those of King et al. (June 2009) and found relatively weak correspondence between the two protocols (Figure 40, next page). However, some of the variance could have been due to differences in the day of sampling (protocols were not compared on the same day at each site). Nevertheless, we recommend that the TCEQ physical habitat assessment and associated HQI consider incorporate more direct measures of these variables into their assessments and consider a more extensive coverage of the reach, either by adding more cross-section transects for certain variables (e.g., EMAP uses 21 for substrate characterization) or adopting the 100-point zig-zag approach used by King et al. 2009. Once investigators are adequately trained, the 100-point method is relatively rapid to employ (1 investigator can complete the 100-point counts in 1-2 hours).

Figure 40. Comparison of fine sediment, gravel+cobble, filamentous algae, biofilm/microalgae, and macrophyte cover (% of reach) using the 100-point zig-zag transect method described in King et al. (2009) versus comparable metrics included in the TCEQ HQI method. Comparisons were made using the 26 stream locations sampled by King et al (2009) in June 2008 and the same locations sampled again in late June-August 2008 for the TCEQ HQI and Nutrient Indicators studies (Winemiller et al. 2009 and this report).

- As a practical compromise to adding some new physical habitat or algal/macrophyte metrics, we suggest that TCEQ consider reducing or elimating habitat measurements that are either never used in the existing HQI or were not shown to correspond to any biological changes in the 3 ecoregions, as recommended by Winemiller et al (2009).
- Periphyton chlorophyll-a and ash-free dry mass (AFDM) were not reliable indicators of nutrient enrichment in any ecoregion. This is not surprising given the shift from thick, calcareous periphyton comprised of cyanobacteria, diatoms, fungi, and bacteria to a community of pollution-tolerant diatoms and colonial/filamentous green algae consistently reported by King et al. (2009; Appendix B). Periphyton biomass is high in all of these streams, but the structure and function of the periphyton is very different in response to nutrient enrichment. The ratio of chlorophyll a to AFDM (CHLA:AFDM) did show a moderately strong response to TP enrichment in Ecoregion 29, and may be an indicator of significant functional changes in the periphyton as non-chlorophyll bearing organisms decline and are replaced by algae. This metric also consistently increased in response to TP in King et al. (2009; Appendix B).
- Surface-water variables related to particulates (chlorophyll-a, nonfiltrable and filtrable residue) also significantly increased in response to nutrients and may be useful indicators of nutrient-related degradation if found to exceed the reported thresholds in this report. However, some sites had low values for these variables even though sites had high nutrients and substantial changes in biological indicators, thus surface-water measures alone are not adequate for characterizing biological condition.
- Algal species composition was very strongly linked to surface water nutrients, particularly phosphorus, in Ecoregion 29, but was noisy and not related to any nutrient or nutrient related variables among the sand/mud algal samples from Ecoregions 32 and 33.
 We suggest that algal species composition may provide the most sensitive and direct measure of biological integrity in streams of Ecoregion 29. However, given the srong relationship to less costly and more easily measured predictors (surface-water nutrients,

C:P content of periphyton, etc), these measures are likely to be strong surrogate variables for screening sites for potential biological degradation.

- Numerous algal species declined sharply in Ecoregion 29 in response to surface-water TP between 15 and 25 ug/L. Many other tolerant algae increased at TP between 20 and 50 ug/L. The significant threshold indicator species reported in this document, coupled with species lists provided in King et al. (2009; Appendix B) could be used in developing univariate metrics of nutrient enrichment for Ecoregion 29 streams.
- Fish communities were tightly coupled to the lower-trophic-level biological changes in streams of Ecoregion 29. Based on these and results described in Winemiller et al. (2009), we recommend five potential new fish metrics of nutrient or nutrient-related problems in streams of Ecoregion 29:
 - Fish community index (nMDS Axis 1). Site values are scores along the primary axis of variation in fish community structure from non-metric multidimensional scaling ordination of the 38 sites in Ecoregion 29 during summer 2008. Low (negative) scores represent sites that are most dissimilar from sites with high levels of outfalls, pasture, nutrients, chloride, and sediment (high, positive scores on axis 1).
 - Percent grazing herbivore abundance (*Campostoma anomalum*, central stoneroller). *Campostoma* was found to decline significantly in response to pasture, outfalls, embeddedness, and mud-silt in Winemiller et al. (2009), and additionally to chloride, TP, and C:P periphyton in this study. *Campostoma* plays a fundamental role in stream ecosystem processes in these streams by grazing on periphyton, recycling nutrients, exporting sediment, and as a primary food resource for native predator fishes such as spotted bass (*Micropterus punctalatus*).
 - Percent abundance of darters (*Etheostoma*). *Etheostoma spectabile* was the dominant benthic invertivore in clear-water, low nutrient streams in Ecoregion 29, but rapidly declined with increasing nutrient enrichment, sedimentation, chloride, and drivers of these stressors (outfalls, pasture). Other related species (*Percina* spp.) were too infrequently collected to determine statistical significance but

likely were negatively affected by these stressors as well and could be combined with this metric. Primarily riffle, crevice-dwelling fish, these fish are mechanistically linked to benthic processes in streams and are another key indicator of biological integrity in these ecosystems.

- Percent abundance of nutrient-intolerant cyprinids (*Cyprinella venusta, Notropis volucellus*). Blacktail shiners are common in most streams in Ecoregion 29, but their percent contribution to community structure clearly declined as nutrient enrichment and sedimentation increased. Mimic shiner was also sensitive to these stressors.
- Percent abundance of nutrient-tolerant cyprinids (*Cyprinella lutrensis*, 0 *Pimephales vigilax*). Both of these species showed sharp increases in abundance with nutrient enrichment, as indicated by TITAN. Although these are native species and contribute positively to "number of native cyprinids", a metric used in the TCEQ IBI, these species are in fact very tolerant of pollution and benefit from human alterations to streams. Red shiners have been shown through historical analysis of Brazos River seine data (T. Bonner, unpublished data) to have markedly increased in abundance in the past 30-50 years while other native cyprinds have declined, a phenomenon coincident with dam construction and water quality declines in the mainstem Brazos. Red shiner was found to be particularly prolific at sites below outfalls in this study. *Pimephales vigilax*, or bullhead minnow, is a close relative to the toxicological test organism *Pimephales* promelas, or fathead minnow, used because of its ease in reproduction and resistance to physiological stress. Bullhead minnows were only occasionally collected in low-nutrient streams, but were dominant in enriched streams.

In summary, when coupling results of this study with findings of King et al. (2009; Appendix B), there is a very high probability that streams in Ecoregion 29 exposed to surface-water TP levels exceeding 20 ug/L, and possibly 15 ug/L, will experience a strong biological response needing further investigation to establish thresholds for nutrient management, including loss of characteristic structure (periphyton and macrophytes), loss of numerous species (algae , macroinvertebrates (King et al. 2009), and fish), additions of species that are associated with
eutrophication or disturbance, minimum dissolved oxygen levels unsuitable for supporting native fauna during low flows (King et al. 2009), and increase likelihood of nuisance algal growth that could limit the recreational use of streams (King et al. 2009). Streams exceeding 200-500 ug/L may represent another threshold of biological response, with more consistent nuisance algal growth and additional losses of algal, macroinvertebrate and fish species and replacement with species associated with poor water quality.

Additional research on algae and fish community responses to nutrient enrichment and sedimentation is needed in Ecoregions 32 and 33. Insufficient numbers of sites coupled with the poor quality of the sand/mud samples renders these results too uncertain for definitive recommendations. Future studies need to target a minimum of 30 sites per ecoregion and use a reconnaissance approach before selecting sites to ensure that enough sites with both very low and high nutrient levels are represented in the data set to allow indicator development and threshold detection.

LITERATURE CITED

- American Public Health Association, et al. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation. 20th edition, 1998.Washington, D.C.
- American Society for Testing and Materials International. Annual Book of Standards, Vol 11.02. May 2004. West Conshohocken, PA
- Anderson T., J. Castensen, E. Hernandez-Garcia, C. M. Duarte. 2008. Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution (In Press).
- Baker, M. E., and R. S. King. In revision. Threshold Indicator Taxa Analysis (TITAN): A method for identifying and interpreting ecological community thresholds.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, DC, USA.
- Breiman, L., J. H. Friedman, R. A. Olshen, C. J. Stone. 1984. Classification and regression trees. Wadsworth Int.
- Brenden, T.O, L. Wang, and Z.Su. 2008. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environmental Management 42:821-832.
- Brooks BW, Stanley JK, White JC, Turner PK, Wu KB & TW La Point. 2004. Laboratory and field responses to cadmium in effluent-dominated stream mesocosms. Environmental Toxicology & Chemistry 24: 464-469.
- Clarke, K. R. 1993. Nonparametric Multivariate Analyses of Changes in Community Structure.Aust. J. Ecol. 18: 117-143
- De'Ath, G. 2002. Multivariate regression trees: a new technique for modeling speciesenvironment relationships. Ecology 83:1105-1117.
- De'Ath, G. and K.E. Fabricius. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81:3178-3192.
- Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345-366.
- EPA (United States Environmental Protection Agency). 2000. Multi-resolution land characteristics consortium (MRLC) database. (http://www.epa.gov/mrlcpage)
- Griffith, G.E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L.Hatch, and D. Bezanson. 2004. Ecoregions of Texas (color poster with map, descriptivetext, and photographs): Reston, Virginia, U.S. Geological Survey (map scale1:2,500,000).
- Hawkins, C., Ostermiller, J., Vinson, M., and R.J. Stevenson. 2001. Stream algae, invertebrate, and environmental sampling associated with biological water quality assessments: field protocols. Utah State University Web site: www.usu.edu/buglab/monitor/USUproto.pdf.
- King, R. S. and C. J. Richardson. 2003. Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environmental Management 31:795-809.
- King, R. S., and M. E. Baker. In preparation, invited paper. Considerations for quantifying ecological community thresholds in response to anthropogenic environmental gradients. *Journal of the North American Benthological Society (Bridges* special section on thresholds).

McCune, B., and J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR.

- Minchin, P. R. 1987. An Evaluation of the Relative Robustness of Techniques for EcologicalOrdination. Vegetatio 69: 89-107
- Moulton, Stephen R. II, Jonathan G. Kennen, Robert M. Goldstein, and Julie A. Hambrook. 2002. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. USGS Open-File Report 02-150, Reston, VA.
- Sonderegger, D. L., H. Wang, W. H. Clements, B. R. Noon. 2009. Using SiZer to detect thresholds in ecological data. Frontiers in Ecology and the Environment 7, doi:10.1890/070179
- Texas Commission on Environmental Quality (TCEQ). 2005. Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Community and Habitat Data (draft report). Surface Water Quality Monitoring Program, Monitoring and Operations Division, Austin, Texas. Report #RG-416.
- Texas Commission on Environmental Quality. Guidance for Assessing Texas Surface and Finished Drinking Water Quality Data. 2004. TCEQ. Austin, TX. URL:http://www.tnrcc.state.tx.us/ water/quality/04 twqi303d/04 guidance.pdf
- Texas Commission on Environmental Quality. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment, and Tissue. Publication No. RG-415. December 2003. TCEQ. Austin, TX URL: http://www.tceq.state.tx.us/ comm_exec/forms_pubs/pubs/rg/rg-415/index.html
- Texas Commission on Environmental Quality. Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collection and Analyzing Biological Community and Habitat Data. Draft November 2004. TCEQ. Austin, TX
- Texas Commission on Environmental Quality. Surface Water Quality Monitoring Data Management Reference Guide. August 24, 2004. TCEQ. Austin, TX. URL: http://www.tnrcc.state.tx.us/ water/quality/data/wqm/wdma/dmrg/2004dmrg.html
- Texas Commission on Environmental Quality. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment, and Tissue.
- Toms, J. and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.
- Winemiller, K. O., R. S. King, J. M. Taylor, and A. Pease. 2009. Refinement and Validation of Habitat Quality Indices (HQI) and Aquatic Life Use (ALU) Indices for Application to Assessment and Monitoring of Texas Surface Waters. Final Report to the Texas Commission on Environmental Quality, Contract # 582-6-80304.

VariableDescriptionTKNTotal Kjehldal Nitrogen, ug/LNH3-NAmmonia-nitrogen, surface water, ug/LNO2NO3-NNitrite + nitrate-nitrogen, surface water, ug/LPO4-POrthophosphate, surface water, ug/LTN_TCEQTotal nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N)TN_BUTotal nitrogen, Baylor lab surface water, ug/LTP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LCHLORIDEChloride, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LTVONRESITotal carbon, organic fraction of periphyton, %C_ALGTotal arbon, organic fraction of periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %P_ALGTotal phosphorus, surface water, mg/LC_ALGTotal carbon, organic fraction of periphyton, %P_ALGTotal antrogen, organic fraction of periphyton, %P_ALGTotal nitrogen, organic fraction of periphyton, %P_ALGTotal phosphorus, artio, bulk periphytonCP_BULKCarbon:nitrogen ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk peri		
TKNTotal Kjehldal Nitrogen, ug/LNH3-NAmmonia-nitrogen, surface water, ug/LNO2NO3-NNitrite + nitrate-nitrogen, surface water, ug/LPO4-POrthophosphate, surface water, ug/LTN_TCEQTotal nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N)TN_BUTotal nitrogen, Baylor lab surface water, ug/LTP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTONRESITotal filtrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal arbon, organic fraction of periphyton, %C_BULKTotal arbon, organic fraction of periphyton, %N_ALGTotal nitrogen, ratio, of periphyton, %P_ALGTotal phosphorus, bulk periphyton, %P_BULKTotal phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:nitrogen ratio, OM fraction of periphytonCP_BULKCarbon:nitrogen ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphyton<	Variable	Description
 NH3-N Ammonia-nitrogen, surface water, ug/L N02NO3-N Nitrite + nitrate-nitrogen, surface water, ug/L PO4-P Orthophosphate, surface water, ug/L TN_TCEQ Total nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N) TN_BU Total nitrogen, Baylor lab surface water, ug/L TP_TCEQ Total phosphorus, TCEQ lab, surface water, ug/L TP_BU Total phosphorus, TCEQ lab, surface water, ug/L CHL Alkalinity, total, surface water, mg/L CHL Alkalinity, total, surface water, mg/L CHL ORIDE Chloride, surface water, mg/L FLOURIDE Flouride, surface water, mg/L TVONRESI Total nonfiltrable residue, mg/L VNONRESI Volatile nonfiltrable residue, mg/L CHLA_UGL Chlorophyll-a, surface water, ug/L CHLA_UGL Chlorophyll-a, surface water, ug/L CALG Total carbon, organic fraction of periphyton, % N_ALG Total nitrogen, bulk periphyton, % N_ALG Total nitrogen, surface on of periphyton, % P_ALG Total phosphorus, organic fraction of periphyton, % P_BULK Total phosphorus, organic fraction of periphyton CP_BULK Total phosphorus, organic fraction of periphyton CP_ALG Carbon:nitrogen ratio, OM fraction of periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, Maction of periphyton CP_BULK Carbon:nitrogen ratio, See fraction of periphyton CP_BULK Nitrogen:phosphorus ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, bulk periphyton CP_BULK Nitrogen:phosphorus ratio, bulk periphyton<	TKN	Total Kjehldal Nitrogen, ug/L
 NO2NO3-N Nitrite + nitrate-nitrogen, surface water, ug/L PO4-P Orthophosphate, surface water, ug/L TN_TCEQ Total nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N) TN_BU Total nitrogen, Baylor lab surface water, ug/L TP_TCEQ Total phosphorus, TCEQ lab, surface water, ug/L TP_BU Total phosphorus, Baylor lab, surface water, ug/L ALKALIN Alkalinity, total, surface water, mg/L CHLORIDE Chloride, surface water, mg/L FLOURIDE Flouride, surface water, mg/L TVONRESI Total nonfiltrable residue, mg/L VNONRESI Total nonfiltrable residue, mg/L CHLA_UGL Chlorophyll-a, surface water, ug/L CHLA_UGL Chlorophyll-a, surface water, ug/L CHLA_UGL Chlorophyll-a, surface water, ug/L CALG Total carbon, organic fraction of periphyton, % N_ALG Total nitrogen, bulk periphyton, % N_BULK Total nitrogen, sulk periphyton, % P_ALG Total phosphorus, organic fraction of periphyton, % P_BULK Total phosphorus, organic fraction of periphyton CP_BULK Carbon:nitrogen ratio, OM fraction of periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, M fraction of periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, Sulk periphyton CP_BULK Carbon:nitrogen ratio, Sulk periphyton CP_BULK Nitrogen:phosphorus ratio, bulk periphyton CP_BULK Nitrogen:phosphorus ratio, Sulk periphyton CP_SED Carbon:phosphorus ratio, Sulk periphyton CP_BULK Nitrogen:phosphorus ratio, Sulk periphyton CP_BU	NH3-N	Ammonia-nitrogen, surface water, ug/L
PO4-POrthophosphate, surface water, ug/LTN_TCEQTotal nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N)TN_BUTotal nitrogen, Baylor lab surface water, ug/LTP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LCHLORIDEChloride, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LTFILRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal nitrogen, organic fraction of periphyton, %N_ALGTotal nitrogen, surface ratio, of periphyton, %P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_ALGNitrogen:phosphorus ratio, bulk periphytonCH_AEGNitrogen:phosphorus ratio, bulk periphytonCH_ALGNitrogen:phosphorus ratio, bulk periphytonCH_ALGNitrogen:phosphorus ratio, bulk periphytonCH_AEGNitrogen:phosphorus rati	NO2NO3-N	Nitrite + nitrate-nitrogen, surface water, ug/L
TN_TCEQTotal nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N)TN_BUTotal nitrogen, Baylor lab surface water, ug/LTP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LALKALINAlkalinity, total, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LCHLA_UGLChlorophyll-a, surface water, ug/LCALGTotal carbon, organic fraction of periphyton, %C_BULKTotal nitrogen, organic fraction of periphyton, %N_ALGTotal phosphorus, organic fraction of periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphytonCN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonNP_BULKNitrogen:phosphorus ratio, Sed fraction of periphytonNP_BULKChloophyll a, periphyton, g/m2Chloophyll a, periphyton, g/m2CH_AEDChlorophyll a, periphyton, g/m2	PO4-P	Orthophosphate, surface water, ug/L
TN_BUTotal nitrogen, Baylor lab surface water, ug/LTP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LALKALINAlkalinity, total, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LCHLA_UGLChlorophyll-a, surface water, ug/LCALGTotal carbon, organic fraction of periphyton, %C_BULKTotal nitrogen, organic fraction of periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %P_BULKCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:nitrogen ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCH_AEQChlorophyll_a: AEDM ratio, periphyton, gm2CH_AEDMChlorophyll_a: AEDM ratio, per	TN_TCEQ	Total nitrogen, TCEQ lab, (NH3-N + TKN + NO2NO3N)
TP_TCEQTotal phosphorus, TCEQ lab, surface water, ug/LTP_BUTotal phosphorus, Baylor lab, surface water, ug/LALKALINAlkalinity, total, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal phosphorus, bulk periphyton, %P_ALGTotal phosphorus, bulk periphyton, %P_BULKCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonP_BULKNitrogen:phosphorus ratio, Sed fraction of periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, Sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonCH_A_M2Chloophyll a, periphyton, mg/m2CH_A_EDMAsh-free dry mass, periphyton, g/m2	TN_BU	Total nitrogen, Baylor lab surface water, ug/L
TP_BUTotal phosphorus, Baylor lab, surface water, ug/LALKALINAlkalinity, total, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LCHLA_UGLChlorophyll-a, surface water, ug/LCALGTotal carbon, organic fraction of periphyton, %C_BULKTotal arbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal phosphorus, bulk periphyton, %P_ALGTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, oM fraction of periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_ALGChloophyll, a, periphyton, g/m2CHLA_M2Chloophyll, a, periphyton, g/m2CHLA_EDMChloophyll, a, AETDM ratioCP_ALAChloophyll, a, periphyton, g/m2	TP_TCEQ	Total phosphorus, TCEQ lab, surface water, ug/L
ALKALINAlkalinity, total, surface water, mg/LCHLORIDEChloride, surface water, mg/LFLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LTFILRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %C_NALGCarbon:nitrogen ratio, OM fraction of periphytonCP_BULKCarbon:nitrogen ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_BULKNitrogen:phosphorus ratio, bulk periphytonCP_ALGNitrogen:phosphorus ratio, sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCP_ALGNitrogen:phosphorus ratio, bulk periphytonCP_ALGChloophylla, periphyton, g/m2CHLA_M2Chloophylla; periphyton, g/m2CHLA_M2Ash-free dry mass, periphyton, g/m2	TP_BU	Total phosphorus, Baylor lab, surface water, ug/L
 CHLORIDE Chloride, surface water, mg/L FLOURIDE Flouride, surface water, mg/L TNONRESI Total nonfiltrable residue, mg/L VNONRESI Volatile nonfiltrable residue, mg/L TFILRESI Total filterable residue, mg/L CHLA_UGL Chlorophyll-a, surface water, ug/L C_ALG Total carbon, organic fraction of periphyton, % C_BULK Total carbon, bulk periphyton, % N_ALG Total nitrogen, organic fraction of periphyton, % N_BULK Total nitrogen, bulk periphyton, % P_ALG Total phosphorus, organic fraction of periphyton, % P_BULK Total phosphorus, organic fraction of periphyton C_BULK Carbon:nitrogen ratio, OM fraction of periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:phosphorus ratio, bulk periphyton CP_BULK Carbon:phosphorus ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, Sed fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, bulk periphyton NP_ALG Nitrogen:phosphorus ratio, bulk periphyton CHLA_M2 Chloophyll a, periphyton, g/m2 CHLA_EDM Chlorophyll-a:AEDM ratio periphyton pmg/m 	ALKALIN	Alkalinity, total, surface water, mg/L
FLOURIDEFlouride, surface water, mg/LTNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LTFILRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, of fraction of periphytonNP_BULKNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, Sed fraction of periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, g/m2CHLAEDMChloophyll a, periphyton, g/m2	CHLORIDE	Chloride, surface water, mg/L
TNONRESITotal nonfiltrable residue, mg/LVNONRESIVolatile nonfiltrable residue, mg/LTFILRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, OM fraction of periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, W fraction of periphytonCP_ALGCarbon:phosphorus ratio, W fraction of periphytonCP_SEDCarbon:phosphorus ratio, Sed fraction of periphytonNP_BULKNitrogen:phosphorus ratio, W fraction of periphytonNP_ALGNitrogen:phosphorus ratio, W fraction of periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLCHloophyll-a:AEDM ratio_periphyton mg/m	FLOURIDE	Flouride, surface water, mg/L
 VNONRESI Volatile nonfiltrable residue, mg/L TFILRESI Total filterable residue, mg/L CHLA_UGL Chlorophyll-a, surface water, ug/L C_ALG Total carbon, organic fraction of periphyton, % C_BULK Total carbon, bulk periphyton, % N_ALG Total nitrogen, organic fraction of periphyton, % N_BULK Total nitrogen, bulk periphyton, % P_ALG Total phosphorus, organic fraction of periphyton, % P_BULK Total phosphorus, organic fraction of periphyton CN_ALG Carbon:nitrogen ratio, OM fraction of periphyton CN_BULK Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:phosphorus ratio, bulk periphyton CP_BULK Carbon:phosphorus ratio, sed fraction of periphyton CP_SED Carbon:phosphorus ratio, OM fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, Sed fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, Sed fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, bulk periphyton CHLA_M2 Chloophyll a, periphyton, mg/m2 (rock surface area) AFDM_M2 Ash-free dry mass, periphyton, mg/m2 	TNONRESI	Total nonfiltrable residue, mg/L
TFILRESITotal filterable residue, mg/LCHLA_UGLChlorophyll-a, surface water, ug/LC_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLAEDMChlorophylla, a AEDM ratio, periphyton mg/m2	VNONRESI	Volatile nonfiltrable residue, mg/L
 CHLA_UGL Chlorophyll-a, surface water, ug/L C_ALG Total carbon, organic fraction of periphyton, % C_BULK Total carbon, bulk periphyton, % N_ALG Total nitrogen, organic fraction of periphyton, % N_BULK Total nitrogen, bulk periphyton, % P_ALG Total phosphorus, organic fraction of periphyton, % P_BULK Total phosphorus, organic fraction of periphyton, % CN_ALG Carbon:nitrogen ratio, OM fraction of periphyton CN_BULK Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:nitrogen ratio, bulk periphyton CP_BULK Carbon:nitrogen ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, Sed fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, bulk periphyton NP_BULK Nitrogen:phosphorus ratio, bulk periphyton CHLA_M2 Chloophyll a, periphyton, g/m2 CHL AEDM Chlorophyll-a: AEDM ratio periphyton mg/g 	TFILRESI	Total filterable residue, mg/L
C_ALGTotal carbon, organic fraction of periphyton, %C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, organic fraction of periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:nitrogen ratio, OM fraction of periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2CHL AEDMChloophylla: AEDM ratio, periphyton mg/g	CHLA_UGL	Chlorophyll-a, surface water, ug/L
C_BULKTotal carbon, bulk periphyton, %N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, sed fraction of periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLAFDMChlorophyll-a: AFDM ratio	C_ALG	Total carbon, organic fraction of periphyton, %
N_ALGTotal nitrogen, organic fraction of periphyton, %N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, bulk periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2CHL AEDMChlorophyll-a: AEDM ratio periphyton mg/m2	C_BULK	Total carbon, bulk periphyton, %
N_BULKTotal nitrogen, bulk periphyton, %P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, bulk periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL AEDMChlorophyll-a: AFDM ratio periphyton mg/m	N_ALG	Total nitrogen, organic fraction of periphyton, %
P_ALGTotal phosphorus, organic fraction of periphyton, %P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, oM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2CHL AEDMChloophyll-a:AEDM ratio periphyton mg/g	N_BULK	Total nitrogen, bulk periphyton, %
P_BULKTotal phosphorus, bulk periphyton, %CN_ALGCarbon:nitrogen ratio, OM fraction of periphytonCN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL AEDMChloophyll-a:AEDM ratio periphyton mg/g	P_ALG	Total phosphorus, organic fraction of periphyton, %
 CN_ALG Carbon:nitrogen ratio, OM fraction of periphyton CN_BULK Carbon:nitrogen ratio, bulk periphyton CP_ALG Carbon:phosphorus ratio, OM fraction of periphyton CP_BULK Carbon:phosphorus ratio, bulk periphyton CP_SED Carbon:phosphorus ratio, sed fraction of periphyton NP_ALG Nitrogen:phosphorus ratio, OM fraction of periphyton NP_BULK Nitrogen:phosphorus ratio, bulk periphyton CHLA_M2 Chloophyll a, periphyton, mg/m2 CHL AEDM Chlorophyll-a:AEDM ratio periphyton mg/g 	P_BULK	Total phosphorus, bulk periphyton, %
CN_BULKCarbon:nitrogen ratio, bulk periphytonCP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLAEDMCHLChlorophyll-a: AEDM ratio	CN_ALG	Carbon:nitrogen ratio, OM fraction of periphyton
CP_ALGCarbon:phosphorus ratio, OM fraction of periphytonCP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLAEDMCHLChlorophyll-a: AEDM ratioCHLAEDM	CN_BULK	Carbon:nitrogen ratio, bulk periphyton
CP_BULKCarbon:phosphorus ratio, bulk periphytonCP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHLAEDMCHLChlorophyll-a: AEDM ratio	CP_ALG	Carbon:phosphorus ratio, OM fraction of periphyton
CP_SEDCarbon:phosphorus ratio, sed fraction of periphytonNP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL_AEDMChlorophyll-a:AEDM ratio_periphyton_mg/g	CP_BULK	Carbon:phosphorus ratio, bulk periphyton
NP_ALGNitrogen:phosphorus ratio, OM fraction of periphytonNP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL_AEDMChlorophyll-a:AEDM ratio_periphyton_mg/g	CP_SED	Carbon:phosphorus ratio, sed fraction of periphyton
NP_BULKNitrogen:phosphorus ratio, bulk periphytonCHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL_AEDMChlorophyll-a:AEDM ratio, periphyton, mg/g	NP_ALG	Nitrogen:phosphorus ratio, OM fraction of periphyton
CHLA_M2Chloophyll a, periphyton, mg/m2 (rock surface area)AFDM_M2Ash-free dry mass, periphyton, g/m2CHL_AEDMChlorophyll-a: AEDM ratio_periphyton_mg/g	NP_BULK	Nitrogen:phosphorus ratio, bulk periphyton
AFDM_M2 Ash-free dry mass, periphyton, g/m2 CHL AFDM Chlorophyll-a: AFDM ratio periphyton mg/g	CHLA_M2	Chloophyll a, periphyton, mg/m2 (rock surface area)
CHI AEDM Chlorophyll-a: AEDM ratio periphyton mg/g	AFDM_M2	Ash-free dry mass, periphyton, g/m2
CHL_M DM Chlorophyn-a.M DM fatto, penphyton, hig/g	CHL_AFDM	Chlorophyll-a:AFDM ratio, periphyton, mg/g

Appendix A1. Key to water chemistry and periphyton variable short names used throughout this document.

Appendix A2. Local-scale environmental variables measured in the HQI component of the study.

Category	Abbreviation	Variable
Habitat type	HAB_TYPE	Habitat type score (riffle, run, pool, or glide) averaged
		across transects
	NO_RIFF	Number of riffles in study reach
Substrate	BEDROCK	Percent of substrate that is bedrock
	LG_BLDR	Percent of substrate that is large boulders (>45 cm)
	SM_BLDR	Percent of substrate that is small boulders (25-45 cm)
	COBBLE	Percent of substrate that is cobble (6-25 cm)
	GRAVEL	Percent of substrate that is gravel (2-60 mm)
	SAND	Percent of substrate that is sand (0.06-2 mm)
	MUDSILT	Percent of substrate that is mud or silt (<0.06 mm)
	GRV_LRG	Percent of substrate that is gravel or larger
	EMBEDDED	Substrate embeddedness (percent of boulders and cobble
		covered in fine sediment)
Algae/macrophytes	ALGAE_AB	Abundance of algae in study reach (scored as abundant,
		common, rare, or absent)
	MCRPH_AB	Abundance of aquatic macrophytes in study reach (scored
		as abundant, common, rare, or absent)
Instream cover	STRM_COV	Visually estimated percent cover
	FILA_ALG	Percent of instream cover provided by filamentous algae
	MICRALG	Percent of instream cover provided by microalgae and
		biofilms
	MACRPHYT	Percent of instream cover provided by aquatic
		macrophytes
	LWD	Percent of instream cover provided by large woody debris
	SWD	Percent of instream cover provided by small woody debris
	ROOTS	Percent of instream cover provided by submerged roots
	OVR_VEG	Percent of instream cover provided by overhanging
		terrestrial vegetation
	UNDERCUT	Percent of instream cover provided by undercut banks
	LEAFPACK	Percent of instream cover provided by leaf packs
	BOULDER	Percent of instream cover provided by boulders and other
		large substrates
	ARTIFICL	Percent of instream cover provided by artificial objects
		(e.g., tires, cement blocks)
	COV_TYPE	Number of the above cover types present

Category	Abbreviation	Variable
Stream	STRMBEND	Number of stream bends in study reach
morphology		
	WELLBEND	Number of well-defined stream bends in study reach
	MODBEND	Number of moderately-defined stream bends in study
	POORBEND	Number of poorly-defined stream bends in study reach
	WETWIDTH	Wetted width of stream (averaged across transects)
	AVG DEP	Average stream depth
	THAL DEP	Thalweg depth (averaged across transects)
	POOL WID	Maximum pool width
	POOL DEP	Maximum pool depth
	VELDEPTH	Velocity/depth regime score (optimal, suboptimal,
	,	marginal, or poor)
Flow	FLOWSTAT	Flow status score (high, moderate, low, or no flow)
	DISCHARG	Discharge (instantaneous stream flow in ft ³ /s)
Roots/woody	CWD_WET	Count of wetted coarse woody debris in study reach
debris		
	CWD_BKF	Count of dry coarse woody debris within bank-full stream
		width
	ROOT_WET	Count of wetted root wads in study reach
	ROOT_BKF	Count of dry root wads within bank-full stream width
Riparian buffer	BUFFER	Width of riparian buffer (averaged across transects)
	RIP_IKEE	Percent of riparian vegetation consisting of trees
	RIP_SHKB	Percent of riparian vegetation consisting of shrubs
	RIP_GRAS	Percent of riparian vegetation consisting of grasses/forbs
	RIP_CULT	fields
	OTHER	Percent of riparian vegetation consisting of other types
	CANOPY	Percent of stream shaded by tree canopy (measured with
		densitometer)
Aesthetics	AESTHET	Aesthetics score (wilderness, natural area, common
		setting, or offensive)
Bank	BNK_SLOP	Bank slope (averaged across transects)
characteristics		
	EROSION	Percentage of bank with evident or potential erosion
	SOIL_EXP	Percentage of exposed soil on banks
Water parameters	DO	Dissolved oxygen (mg/L)
	PH	pH
	SPCOND	Specific conductivity (µs)
	TEMP	Water temperature (°C)

Appendix A2, continued. Local-scale environmental variables used in this study.

Variable	Description
LAT_DS	Latitude, decimal degrees
LONG_DS	Longitude, decimal degrees
EcoLev3	Level 3 ecoregion
PRECIP	Mean annual precipitation, calculated for watershed
ELEV_M	Mean elevation
WSLOPE	Mean watershed slope
WSHEDKM2	Watershed area
DAMS_CT	Number of dams in watershed
OUT_MGD	Cumulative permitted outfall discharge rate within watershed (million
	gallons per day)
OUT_CT	Number of outfalls
RESV_CT	Number of reservoirs within watershed
RESV_PCT	% of land covered by reservoirs within watershed
WATER	% of land covered by water within watershed
DEV_TOT	% developed land
FOR_TOT	% forested land, including forested wetlands
SHRUB	% shrubland
GRASS	% grassland
PASTURE	% pasture
ROWCROP	% rowcrop
WET_TOT	% wetland
AG_TOT	% agriculture (crop + pasture)
IMP_PCT	% impervious cover
CNPY_PCT	% canopy cover

Appendix A3. Watershed physiographic variables used in this study

CODE	SPECIES	FAMILY	ORDER
AMEIMELA	Ameiurus melas	Ictaluridae	Siluriformes
AMEINATA	Ameiurus natalis	Ictaluridae	Siluriformes
APHRSAYA	Aphredoderus sayanus	Aphredoderidae	Percopsiformes
APLOGRUN	Aplodinotus grunniens	Sciaenidae	Perciformes
ASTYMEXI	Astyanax mexicanus	Characidae	Cypriniformes
ATRASPAT	Atractosteus spatula	Lepisosteidae	Semionotiformes
CAMPANOM	Campostoma anomalum	Cyprinidae	Cypriniformes
CARPCARP	Carpiodes carpio	Catostomidae	Cypriniformes
CYPRCARP	Cyprinus carpio	Cyprinidae	Cypriniformes
CYPRLUTR	Cyprinella lutrensis	Cyprinidae	Cypriniformes
CYPRVENU	Cyprinella venusta	Cyprinidae	Cypriniformes
DOROCEPI	Dorosoma cepedianum	Clupeidae	Clupeiformes
DOROPETE	Dorosoma petenense	Clupeidae	Clupeiformes
ERIMSUCE	Erimvzon sucetta	Catostomidae	Cvpriniformes
ESOXAMER	Esox americanus vermiculatus	Esocidae	Esociformes
ETHECHLO	Etheostoma chlorosomum	Percidae	Perciformes
ETHEGRAC	Etheostoma gracile	Percidae	Perciformes
ETHESPEC	Etheostoma spectabile	Percidae	Perciformes
FUNDNOTA	Fundulus notatus	Fundulidae	Cyprinodontiformes
FUNDZEBR	Fundulus zebrinus	Fundulidae	Cyprinodontiformes
GAMBAFFI	Gambusia affinis	Poecilidae	Cyprinodontiformes
HYBONUCH	Hybognathus nuchalis	Cyprinidae	Cypriniformes
ICTAPUNC	Ictalurus punctatus	Ictaluridae	Siluriformes
ICTIBUBA	Ictiobus bubalus	Catostomidae	Cypriniformes
LABISICC	Labidesthes sicculus	Atherinidae	Atheriniformes
LEPIOCUL	Lepisosteus oculatus	Lepisosteidae	Semionotiformes
LEPIOSSE	Lepisosteus osseus	Lepisosteidae	Semionotiformes
LEPOAURI	Lepomis auritus	Centrarchidae	Perciformes
LEPOCYAN	Lepomis cyanellus	Centrarchidae	Perciformes
LEPOGULO	Lepomis gulosus	Centrarchidae	Perciformes
LEPOHUMI	Lepomis humilus	Centrarchidae	Perciformes
LEPOMACR	Lepomis macrochirus	Centrarchidae	Perciformes
LEPOMEGA	Lepomis megalotis	Centrarchidae	Perciformes
LEPOMICR	Lepomis microlophus	Centrarchidae	Perciformes
LEPOMINI	Lepomis miniatus	Centrarchidae	Perciformes
LEPOSPP	Lepomis spp.	Centrarchidae	Perciformes
LYTHFUME	Lythrurus fumeus	Cyprinidae	Cypriniformes
LYTHUMBR	Lythrurus umbratilis	Cyprinidae	Cypriniformes
MENIBERY	Menidia beryllina	Atherinidae	Atheriniformes
MICRPUNC	Micropterus punctatus	Centrarchidae	Perciformes
MICRSALM	Micropterus salmoides	Centrarchidae	Perciformes
MINYMELA	Minytrema melanops	Catostomidae	Cypriniformes
MOROCHRY	Morone chrysops	Moronidae	Perciformes
MOXOCONG	Moxostoma congestum	Catostomidae	Cypriniformes
MOXOPOEC	Moxostoma poecilurum	Catostomidae	Cypriniformes
MUGICEPH	Mugil cephalus	Mugilidae	Perciformes
NOTECRYS	Notemigonus crysoleucas	Cyprinidae	Cypriniformes

Appendix A4.	Species	codes fo	r fish co	llected	among	the 64	stream	sites i	n 2008.

NOTRATRO	Notropis atrocaudalis	Cyprinidae	Cypriniformes
NOTRBUCH	Notropis buchanani	Cyprinidae	Cypriniformes
NOTRTEXA	Notropis texanus	Cyprinidae	Cypriniformes
NOTRVOLU	Notropis volucellus	Cyprinidae	Cypriniformes
NOTUGYRI	Noturus gyrinus	Ictaluridae	Siluriformes
NOTUNOCT	Noturus nocturnus	Ictaluridae	Siluriformes
OPSOEMIL	Opsopoeodus emiliae	Cyprinidae	Cypriniformes
PERCCARB	Percina carbonaria	Percidae	Perciformes
PERCCARB PERCMACR	Percina carbonaria Percina macrolepida	Percidae Percidae	Perciformes Perciformes
PERCCARB PERCMACR PERCSCIE	Percina carbonaria Percina macrolepida Percina sciera	Percidae Percidae Percidae	Perciformes Perciformes Perciformes
PERCCARB PERCMACR PERCSCIE PIMEVIGI	Percina carbonaria Percina macrolepida Percina sciera Pimephales vigilax	Percidae Percidae Percidae Cyprinidae	Perciformes Perciformes Perciformes Cypriniformes
PERCCARB PERCMACR PERCSCIE PIMEVIGI POMOANNU	Percina carbonaria Percina macrolepida Percina sciera Pimephales vigilax Pomoxis annularis	Percidae Percidae Percidae Cyprinidae Centrarchidae	Perciformes Perciformes Perciformes Cypriniformes Perciformes
PERCCARB PERCMACR PERCSCIE PIMEVIGI POMOANNU POMONIGR	Percina carbonaria Percina macrolepida Percina sciera Pimephales vigilax Pomoxis annularis Pomoxis nigromaculatus	Percidae Percidae Percidae Cyprinidae Centrarchidae Centrarchidae	Perciformes Perciformes Perciformes Cypriniformes Perciformes Perciformes

Туре	TAXON_ID	SPECIES
Diatom	ACbiasol	Achnanthes biassolettiana
Diatom	ACcoarct	Achnanthes coarctata
Diatom	AClanapi	Achnanthes lanceolata var. apiculata
Diatom	ACploens	Achnanthes ploenensis
Diatom	ADbryoph	Adlafia bryophila
Diatom	AHexigum	Achnanthidium exiguum
Diatom	AHminuti	Achnanthidium minutissimum
Diatom	ALpelluc	Amphipleura pellucida
Diatom	AMbullat	Amphora bullatoides
Diatom	AMcoffea	Amphora coffeaeformis
Diatom	AMinarie	Amphora inariensis
Diatom	AMlibyca	Amphora libyca
Diatom	AMmontan	Amphora montana
Diatom	AMovalis	Amphora ovalis
Diatom	AMpedcls	Amphora pediculus
Diatom	AMsabina	Amphora sabiniana
Diatom	AMveneta	Amphora veneta
Diatom	ANcostat	Anomoeoneis costata
Diatom	ANsphaer	Anomoeoneis sphaerophora
Diatom	ANsphcos	Anomoeoneis sphaerophora cf. costata
Diatom	ATnorman	Actinocyclus normanii
Diatom	AUalpige	Aulacoseira alpigena
Diatom	AUambig	Aulacoseira ambigua
Diatom	AUgranlt	Aulacoseira granulata
Diatom	AUgrnang	Aulacoseira granulata var. angustissima
Diatom	AUsp	Aulacoseira sp.
Diatom	BApardxa	Bacillaria paradoxa
Diatom	BMcircum	Biremis circumtexta
Diatom	BMlucns	Biremis lucens
Diatom	BRvitrea	Brachyseira vitrea
Diatom	CAaeroph	Caloneis aerophila
Diatom	CAbacill	Caloneis bacillum
Diatom	CAschuma	Caloneis schumanniana
Diatom	CAsilicu	Caloneis silicula
Diatom	CCpedcls	Cocconeis pediculus
Diatom	CCplacen	Cocconeis placentula
Diatom	CCplapse	Cocconeis placentula var. pseudolineata
Diatom	CMaffins	Cymbella affinis
Diatom	CMamphic	Cymbella amphicephala
Diatom	CMcistul	Cymbella neocistula
Diatom	CMcymbif	Cymbella cymbiformis
Diatom	CMdelcat	Cymbella delicatula
Diatom	CMdelcat	Encyonema delicatula
Diatom	CMelgine	Encyonema elginense
Diatom	CMhusted	Cymbella hustedtii
Diatom	CMkolbei	Cymbella kolbei
Diatom	CMlaevis	Cymbella laevis
Diatom	CMnavfrm	Cymbella naviculiformis

Appendix A5. Species codes for algae collected among the 64 stream sites in 2008.

Diatom	CMpaucst	Encyonema (Cymbella) paucistriata
Diatom	CMpusill	Cymbella pusilla
Diatom	CMtriang	Cymbella triangulum
Diatom	CMtumida	Cymbella tumida
Diatom	CPcrucic	Capartogramma crucicula
Diatom	CQsoehas	Chamaepinnularia soehrensis var. hassiaca
Diatom	CSdubius	Cyclostephanos dubius
Diatom	CSinvisi	Cyclostephanos invisitatus
Diatom	CStholif	Cyclostephanos tholiformis
Diatom	CTellipt	Cymatopleura elliptica
Diatom	CTsolea	Cymatopleura solea
Diatom	CYatomus	Cyclotella atomus
Diatom	CYdisuni	Cyclotella distinguenda var. unipunctata
Diatom	CYmenegh	Cyclotella meneghiniana
Diatom	CYmichig	Cyclotella michiganiana
Diatom	CYocella	Cyclotella ocellata
Diatom	CYstelli	Cyclotella stelligera
Diatom	DEkuetzi	Denticula kuetzingii
Diatom	DEsubtil	Denticula subtilis
Diatom	DIconfer	Diadesmis confervacea
Diatom	DIconten	Diadesmis contenta
Diatom	DPellipt	Diploneis elliptica
Diatom	DPmargin	Diploneis marginestriata
Diatom	DPoblong	Diploneis oblongella
Diatom	DPpsudov	Diploneis pseudovalis
Diatom	DPpuella	Diploneis puella
Diatom	ECminutu	Encyonema minutum
Diatom	ECneomul*	Encyonema neomuelleri
Diatom	ECprostr	Encyonema prostratum
Diatom	ECsilesi	Encyonema silesiacum
Diatom	ECtriang	Encyonema triangulum
Diatom	EPadnata	Epithemia adnata
Diatom	EPsorex	Epithemia sorex
Diatom	EPturgid	Epithemia turgida
Diatom	ESflexel	Eucocconeis flexella
Diatom	EUbilun	Eunotia bilunaris
Diatom	EUpectin	Eunotia pectinalis
Diatom	EYevergl	Encyonopsis evergladianum
Diatom	EYmicroc	Encyonopsis microcephala
Diatom	FAinsoc	Fallacia insociabilis
Diatom	FAsubham	Fallacia subhamulata
Diatom	FAtener2	Fallatia tenera
Diatom	FRcapuci	Fragilaria capucina
Diatom	FRellptc	Fragilaria elliptica
Diatom	FRfascic	Fragilaria fasciculata
Diatom	FRleptos	Fragilaria leptostauron
Diatom	FRnanan	Fragilaria nanana
Diatom	FRtenera	Fragilaria tenera
Diatom	FSrhoCAF	Frustulia rhomboides
Diatom	FSvulgar	Frustulia vulgaris
-	0	

Diatom	GEaiken	Geissleria aikenensis
Diatom	GEdecu	Geisleria decussis
Diatom	GEthingv	Geisleria thingvallae
Diatom	GMgrovei	Gomposphenia grovei
Diatom	GMlinfor	Gomphosphenia lingulatiformis
Diatom	GNexigua	Gomphonitzschia exigua
Diatom	GOacumin	Gomphonema acuminatum
Diatom	GOaffine	Gomphonema affine
Diatom	GOangstt	Gomphonema angustatum
Diatom	GOangust	Gomphonema angustum
Diatom	GOclavat	Gomphonema clavatum
Diatom	GOgracil	Gomphonema gracile
Diatom	GOinsign	Gomphonema insigne
Diatom	GOintvib	Gomphonema intricatum var vibrio
Diatom	GOmaclau	Gomphonema maclaughlinii
Diatom	GOmexica	Gomphonema mexicanum
Diatom	GOparvul	Gomphonema parvulum
Diatom	GOpumilu	Gomphonema pumilum
Diatom	GOtrunca	Gomphonema truncatum
Diatom	GYacumin	Gyrosigma acuminatum
Diatom	GYeximum	Gyrosigma eximium
Diatom	Gynodfrm	Gyrosigma nodiferium
Diatom	GYobtusa	Gyrosigma obtusatum
Diatom	HAamphio	Hantzschia amphioxys
Diatom	HAcapita	Hippodonta capitata
Diatom	HAdist	Hantzschia distinctepunctata
Diatom	HIhunga	Hippodonta hungarica
Diatom	KCambig	Craticula ambigua
Diatom	KCbude	Craticula buderi
Diatom	KCcuspid	Craticula cuspidata
Diatom	LUgoepp2	Luticola goeppertiana
Diatom	LUmutica	Luticola mutica
Diatom	LUundula	Luticola undulata
Diatom	MDcircul	Meridion circulare
Diatom	MEvarian	Melosira varians
Diatom	MSellipt	Mastogloia elliptica
Diatom	MSsmithi	Mastogloia smithii
Diatom	MYatomus	Mayamaea atomus
Diatom	NAcaprad	Navicula capitatoradiata
Diatom	NAcarioc	Navicula cariocincta
Diatom	NAcfstr	Navicula cf. striolata
Diatom	NAcircum	Navicula circumtexta
Diatom	NAcrypto	Navicula cryptocephala
Diatom	NAcryten	Navicula cryptotenella
Diatom	NAerifga	Navicula erifuga
Diatom	NAgermii	Navicula germainii
Diatom	NAingua	Navicula ingenua
Diatom	NAkotsch	Navicula kotschyi
Diatom	NAlancel	Navicula lanceolata
Diatom	NAlatrpn	Navicula(Geisleria) lateropunctata

Diatom	NAlatrpn	Navicula lateropunctata
Diatom	NAlibone	Navicula libonensis
Diatom	NAlucdia	Navicula sublucidula
Diatom	NAmenscl	Navicula menisculus
Diatom	EOminima	Eolima minima
Diatom	NAoblong	Navicula oblonga
Diatom	NAorangi	Navicula orangiana
Diatom	NAphylpt	Navicula phyllepta
Diatom	NAradios	Navicula radiosa
Diatom	NArecens	Navicula recens
Diatom	NAreichd	Navicula reichardtiana
Diatom	NAreichd	Navicula reichardtiana
Diatom	NArhynch	Navicula rhynchocephala
Diatom	NArostel	Navicula rostellata
Diatom	NAsancru	Navicula sanctaecrucis
Diatom	NAschdei	Navicula schadei
Diatom	NAschroe	Navicula schroeterii
Diatom	NAstroem	Sellaphora stroemii
Diatom	NAsubmin	Fallacia subminuscula
Diatom	NEOsubmin	Fallatia (Eolima) subminuscula
Diatom	NAsubpla	Navicula (Placoneis) subplacentula
Diatom	NAsubrhy	Navicula subrhynchocephala
Diatom	NAsuec	Navicula suecorum
Diatom	NAsymtrc	Navicula symmetrica
Diatom	NAtenell	Navicula tenelloides
Diatom	NAtripun	Navicula tripunctata
Diatom	NAtrivis	Navicula trivialis
Diatom	NAveneta	Navicula veneta
Diatom	NEamplia	Neidium ampliatum
Diatom	NEbisulc	Neidium bisulcatum
Diatom	NEdubium	Neidium dubium
Diatom	NIaeroph	Nitzschia aerophila
Diatom	NIamphib	Nitzschia amphibia
Diatom	NIampoid	Nitzschia amphibioides
Diatom	NIangtu	Nitzschia angustatula
Diatom	NIangust	Nitzschia angustata
Diatom	NIbremen	Nitzschia bremensis
Diatom	NIbrevis	Nitzschia brevissima
Diatom	NIcapite	Nitzschia capitellata
Diatom	NIclausi	Nitzschia clausii
Diatom	NIcoarct	Nitzschia coarctata
Diatom	NIcombal	Nitzschia compressa var balatonis
Diatom	NIcompre	Nitzschia compressa
Diatom	NIdebili	Nitzschia debilis
Diatom	NIdentic	Nitzschia denticula
Diatom	NIdissin	Nitzschia dissipata
Diatom	NIfilifr	Nitzschia filiformis
Diatom	NIfrustu	Nitzschia frustulum
Diatom	NIgeitlr	Nitzschia geitleri
Diatom	Nlincons	Nitzschia inconspicua
		maschia meonspicaa

Diatom	NIliebrt	Nitzschia liebethruthii
Diatom	NIlinear	Nitzschia linearis
Diatom	NIlorenz	Nitzschia lorenziana
Diatom	NImicroc	Nitzschia microcephala
Diatom	NInana	Nitzschia nana
Diatom	NIobtusa	Nitzschia obtusa
Diatom	NIpalea	Nitzschia palea
Diatom	NIrecta	Nitzschia recta
Diatom	NIrevers	Nitzschia reversa
Diatom	NIscalpe	Nitzschia scalpelliformis
Diatom	NIsigma	Nitzschia sigma
Diatom	NIsintab	Nitzschia sinuata var. tabellaria
Diatom	NIsolita	Nitzschia solita
Diatom	NItropic	Nitzschia tropica
Diatom	NIvaldec	Nitzschia valdecostata
Diatom	NIvitrea	Nitzschia vitrea
Diatom	ORdendro	Orthoseira dentroteres
Diatom	PBprotr	Parlibellus protracta
Diatom	PCclemto	Placoneis clementioides
Diatom	PCconst	Placoneis constans
Diatom	PCparel	Placoneis paraelginensis
Diatom	PCplacen	Placoneis placentula
Diatom	PCseudo	Placoneis pseudanglica
Diatom	PDbrevis	Pseudostaurosira brevistriata
Diatom	PGlepidp	Plagiotropis lepidoptera
Diatom	Plannend	Pinnularia appendiculata
Diatom	PIboreal	Pinnularia borealis
Diatom	PIgibba	Pinnularia gibba
Diatom	Plinterr	Pinnularia interrupta
Diatom	PIlundii	Pinnularia lundii
Diatom	PImicros	Pinnularia microstauron
Diatom	Plobscur	Pinnularia obscura
Diatom	PIsubcap	Pinnularia subcapitata
Diatom	PIviridi	Pinnularia viridis
Diatom	PL delica	Pleurosigma delicatulum
Diatom	PRlaevis	Pleurosira laevis
Diatom	PTlanapi* AClanapi	Planothidium (Achnanthes) lanceolatum var. apiculata
Diatom	PTlanceo	Planothidium lanceolata
Diatom	REsinuta	Reimeria sinuata
Diatom	ROabbre	Rhoicosphenia abbreviata
Diatom	RPbrebsn	Rhonalodia brehissonii
Diatom	RPgibba	Rhopalodia gibba
Diatom	RPgihhrl	Rhonalodia gibberula
Diatom	RPmuscul	Rhopalodia musculus
Diatom	RPoprlta	Rhopalodia operculata
Diatom	SFlaevis	Sellaphora laevissima
Diatom	SFpupula	Sellaphora pupula
Diatom	SFseminu	Sellaphora seminulum
Diatom	SNstrigos	Seminavis strigosa
Diatom	SRconstr	Staurosira construens

Diatom	SRconven	Staurosira construens var. venter
Diatom	SSanceps	Stauroneis anceps
Diatom	SSobtusa	Stauroneis obtusa
Diatom	SSphoeni	Stauroneis phoenicentron
Diatom	SSpssbob	Stauroneis pseudosubobtusoides
Diatom	SSsmithi	Stauroneis smithii
Diatom	STmedius	Stephanodiscus medius
Diatom	SUangust	Surirella angusta
Diatom	SUbreb	Surirella brebissonii
Diatom	SUelegan	Surirella elegans
Diatom	SUminuta	Surirella minuta
Diatom	SUovalis	Surirella ovalis
Diatom	SUspiral	Surirella spiralis
Diatom	SUsplen	Surirella splendida
Diatom	SUtenera	Surirella tenera
Diatom	SYacus	Synedra acus
Diatom	SYgoular	Synedra goulardi
Diatom	SVulna	Synedra ulna
Diatom	TEmusica	Ternsinge musica
Diatom	THhrampt	Thalassiosira hramanutrae
Diatom	THnorden	Thalassiosira pordenskioldii Cleve
Diatom	THen	Thalassiosira sp
Diatom	THyjeurg	Thalassiosira visurais
Diatom	TVocumin	Tradussiosira visurgis
Diatom	TVooronh	Tryblionella acuminala
Diatom	T Yaeloph TVariaul	Tryblionella derophila
Diatom	T Y apicul	Tryblionella apiculata
Diatom	TY caldid	Tryblionella callaa
Diatom	TY cimarg	Tryblionella cf. marginulata
Diatom	I Y debili	Iryblionella debilis
Diatom	TYhungar	Nitzschia hungarica
Diatom	TYhungar	Tryblionella hungarica
Diatom	T Y levide	Tryblionella levidensis
Diatom	TYlittor	Tryblionella littoralis
Soft	AFCsp	Aphanothece sp.
Soft	ANBsp	Anabaena sp.
Soft	ANKfalca	Ankistrodesmus falcatus
Soft	ANKsp	Ankistrodesmus sp
Soft	CALsp	Calothrix sp.
Soft	CHC0AUL	Chlorococcum sp.
Soft	CHLsp	Chlamydomonas sp.
Soft	CHOsp	Chroococcus sp.
Soft	CHRsp	Characium sp.
Soft	CLAglomer	Cladophora glomerata
Soft	CLAsp	Cladophora sp.
Soft	CLOsp2	Closterium sp.
Soft	COEsp	Coelastrum sp.
Soft	COHsp	Coelosphaerium sp.
Soft	COSsp	Cosmarium sp.
Soft	CRUsp	Crucigenia sp
Soft	DESsp	Desmidium sp.

SoftEUGspEuglena sp.SoftEUTspEutreptia spSoftGLCspGloeocystis sp.SoftGLHspGloeocystis sp.SoftGLKturfGloeocystis sp.SoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERglaucMerismopedia convolutaSoftMERglaucMerismopedia glaucaSoftMCspMicrocystis spSoftMOUspMougeotia sp.SoftODCspOccystis sp.SoftOSCspOscillatoria sp.SoftOSCspOscillatoria sp.SoftPEDspPediastrum boryanumSoftPEDspPediastrum spSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSPIspSpiralina sp.SoftSPIspSpiralina sp.SoftSPIspSpiralina sp.SoftSCRsetigSchroderia setigeraSoftSCRsetigSchroderia setigeraSoftSPIspSpiralina sp.SoftSPIspSpiralina sp.Soft	Soft	EUGacus	Euglena acus
SoftEUTspEutreptia spSoftGLCspGloeocystis sp.SoftGLHspGlothece sp.SoftGLKturfGloosekene turfosaSoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERconvlMerismopedia convolutaSoftMERglaucMerismopedia glaucaSoftMICspMicrocystis spSoftMOUspMougeotia sp.SoftOCSpOacystis sp.SoftOCSpOacystis sp.SoftOCSpOacystis sp.SoftPEDborynPediastrum boryanumSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus guadricaudaSoftSCEspScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus ap.SoftSCEspScenedesmus ap.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCZspSchizothrix sp.SoftSPLspSpiraurastrum sp.SoftSPLspSpiraurastrum sp.SoftSPLspSpiraurastrum sp.SoftSPLspSpiraurastrum sp.SoftSPLspSpiraurastrum sp.SoftSPLspSpiraurastrum sp.SoftSTAspTrachelomonas sp.SoftTErtspTertaedron regul	Soft	EUGsp	Euglena sp.
SoftGLCspGloeocystis sp.SoftGLKurfGlothece sp.SoftGLKurfGloeocknet turfosaSoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERglaucMerismopedia glaucaSoftMERglaucMerismopedia glaucaSoftMCspMicrocystis spSoftMOUspMougeotia sp.SoftOCSpOedogonium sp.SoftOCSpOccystis sp.SoftOSCspOccystis sp.SoftPEDborynPediastrum boryanumSoftPEDborynPediastrum spSoftRIVspUhknown RivulariaceaeSoftSCEabundScenedesmus abindansSoftSCEabundScenedesmus abindansSoftSCEquadrScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSPIspSpinagra sp.SoftSPIspSpinagra sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSVSpSpinagra sp.SoftSP	Soft	EUTsp	Eutreptia sp
SoftGLHspGlothece sp.SoftGLKurfGloeoskene turfosaSoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERconvlMerismopedia convolutaSoftMERconvlMerismopedia glaucaSoftMICspMicrocystis spSoftMOUspMougeotia sp.SoftOOCspOocystis sp.SoftOOCspOocystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPEDspPediastrum sp.SoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus diunorphusSoftSCEabundScenedesmus duinorphusSoftSCEspScenedesmus glauricaudaSoftSCEspScenedesmus glauricaudaSoftSCEspScenedesmus sp.SoftSCEspSchroderia setigeraSoftSCEspSchroderia setigeraSoftSPHspSpirulina sp.SoftSPLspSpirulina sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp.SoftSTAspStaurastrum sp	Soft	GLCsp	Gloeocystis sp.
SoftGLKurfGloeoskene turfosaSoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERglaucMerismopedia convolutaSoftMERglaucMerismopedia glaucaSoftMOugoMougeotia sp.SoftOEDspOedogonium sp.SoftOCSpOocystis sp.SoftOScspOocystis sp.SoftOScspOocystis sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus dimorphusSoftSCEspScenedesmus dimorphusSoftSCEspScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus pligeaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspSpirogyra sp.SoftSPIspSpirogyra sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron regulareSoftTETspTrachelomonas sp.SoftTETspTrachelomonas sp.SoftTEIspTribonema sp.SoftUNcentCentric diatomsSoftXLapaUnknown Euglenophyte sp.SoftStotageCidophra	Soft	GLHsp	Glothece sp.
SoftKIRobesaKirchneriella obesaSoftKIRspKirchneriella sp.SoftMERconvlMerismopedia glaucaSoftMICspMicrocystis spSoftMOUspMougeotia sp.SoftOEDspOedogonium sp.SoftOOCspOccystis sp.SoftOSCspOscystis sp.SoftOSCspOscystis sp.SoftOSCspOscystis sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum sp.SoftSCtabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEquadrScenedesmus apuatricaudaSoftSCEquadrScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspSchizothrix sp.SoftSCEspSchizothrix sp.SoftSPIspSpirogyra sp.SoftSPIspSpirogyra sp.SoftSTAspSpirogyra sp.SoftSTAspStaurastrum sp.SoftSTAspSpiroderon regulareSoftTETregulTetraedron regulareSoftTETspTrachelomonas sp.SoftTETspTrachelomonas sp.SoftTRAspTrachelomonas sp. <t< td=""><td>Soft</td><td>GLKturf</td><td>Gloeoskene turfosa</td></t<>	Soft	GLKturf	Gloeoskene turfosa
SoftKIRspKirchneriella sp.SoftMERconvlMerismopedia convolutaSoftMERglaucMerismopedia glaucaSoftMUSpMougeotia sp.SoftMOUspMougeotia sp.SoftOCSpOecystis sp.SoftOCSpOscystis sp.SoftOSCspOscystis sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPEDspPediastrum sp.SoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus aparticaudaSoftSCEadurdScenedesmus aparticaudaSoftSCEaguadrScenedesmus aparticaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSphaerocystis sp.SoftSPLspSpirulina sp.SoftSPLspSpirulina sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron minimumSoftTETregulTetraedron sp.SoftTETspTetraedron sp.SoftTRlspTribonema sp.SoftTETspTetraedron sp.SoftTELspTetraedron sp.SoftTELspTetraedron sp.SoftTETspTetraedron sp.SoftTELspTribonema sp	Soft	KIRobesa	Kirchneriella obesa
SoftMERconvlMerismopedia convolutaSoftMERglaucMerismopedia glaucaSoftMICspMicrocystis spSoftMOUspMougeotia sp.SoftOEDspOecystis sp.SoftOOCspOscystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftSCEabundScenedesmus abundansSoftSCEabundScenedesmus quadricaudaSoftSCEquadrScenedesmus grantSoftSCEspScenedesmus	Soft	KIRsp	Kirchneriella sp.
SoftMERglaucMerismopedia glaucaSoftMICspMicrocystis spSoftMOUgpMougeotia sp.SoftOEDspOedogonium sp.SoftOOCspOocystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus bijugaSoftSCEquadrScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSCRsetigSchroderia setigeraSoftSPIspSpirulina sp.SoftSPIspSpirulina sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftTETspTetraedron regulareSoftTETspTrachedon mainumSoftTETspTrachedon sp.SoftUNcentCentric diatomsSoftUNcentCentric diatomsSoftXLagaUladphoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXElspUnknown Euglenophyte sp	Soft	MERconvl	Merismopedia convoluta
SoftMICspMicrocystis spSoftMOUspMougeotia sp.SoftOEDspOedogonium sp.SoftOOCspOocystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus abundansSoftSCEguadrScenedesmus guadricaudaSoftSCEquadrScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspSchroderia setigeraSoftSPIspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirogyra sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron minimumSoftTETregulTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRlspTrichonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXELspUnknown Euglenophyte sp.SoftXELspUnknown alga sp.	Soft	MERglauc	Merismopedia glauca
SoftMOUspMougeotia sp.SoftOEDspOedogonium sp.SoftOOCspOocystis sp.SoftOOCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEdimorScenedesmus bijugaSoftSCEquadrScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspSchroderia setigeraSoftSCSpSpirogyra sp.SoftSPIspSpirogyra sp.SoftSPLspSpirogyra sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTElspTribonema sp.SoftTRAspTribonema sp.SoftVNcentCentric diatomsSoftVNpenntePennate diatomsSoftXCLalgaUnidentified dinoflagellatesSoftXElspUnknown Euglenophyte sp. <tr< td=""><td>Soft</td><td>MICsp</td><td>Microcystis sp</td></tr<>	Soft	MICsp	Microcystis sp
SoftOEDspOedogonium sp.SoftOOCspOocystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEdimorScenedesmus dimorphusSoftSCEduadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchroderia setigeraSoftSPIspSpiralina sp.SoftSPIspSpiralina sp.SoftSVCspSpiralina sp.SoftSYcspSynechococcus sp.SoftTETregulTetraedron minimumSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftVDreintePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnidentified dinoflagellatesSoftXEUspUnidentified dinoflagellatesSoftXEUspUnidentified dinoflagellates	Soft	MOUsp	Mougeotia sp.
SoftOOCspOocystis sp.SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEdijugScenedesmus bijugaSoftSCEdumorScenedesmus quadricaudaSoftSCEquadrScenedesmus sp.SoftSCRsetigSchoderia setigeraSoftSCRsetigSchoderia setigeraSoftSCZspSchizothrix sp.SoftSPIspSpirogyra sp.SoftSPLspSpirogyra sp.SoftSYCspSynechococcus sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron minimumSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXELspUnidentified dinoflagellates	Soft	OEDsp	Oedogonium sp.
SoftOSCspOscillatoria sp.SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEdimorScenedesmus abundansSoftSCEdundrScenedesmus abundansSoftSCEdimorScenedesmus quadricaudaSoftSCEquadrScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspSchizothrix sp.SoftSCRsetigSchizothrix sp.SoftSPIspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron regulareSoftTETspTrachelomonas sp.SoftTRAspTrachelomonas sp.SoftUncentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown alga sp.	Soft	OOCsp	Oocystis sp.
SoftPEDborynPediastrum boryanumSoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus abundansSoftSCEdimorScenedesmus abundansSoftSCEquadrScenedesmus quadricaudaSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPIspSphaerocystis sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftSYCspSynechococcus sp.SoftTETregulTetraedron minimumSoftTETspTrachelomonas sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftVNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXEUspUnknown alga sp.	Soft	OSCsp	Oscillatoria sp.
SoftPEDspPediastrum spSoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus bijugaSoftSCEdimorScenedesmus dimorphusSoftSCEquadrScenedesmus guadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPIspSpinerocystis sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftSoftCentric diatomsSoftTRspTrachelomonas sp.SoftTRuspCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXEUspUnknown alga sp.	Soft	PEDboryn	Pediastrum boryanum
SoftPHAspPhacus sp.SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus abundansSoftSCEdimorScenedesmus bijugaSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSpirogyra sp.SoftSPIspSpirogyra sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown alga sp.	Soft	PEDsp	Pediastrum sp
SoftRIVspUnknown RivulariaceaeSoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus bijugaSoftSCEdimorScenedesmus dimorphusSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPLspSpirogyra sp.SoftSPLspSpirulina sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown alga sp.	Soft	PHAsp	Phacus sp.
SoftSCEabundScenedesmus abundansSoftSCEbijugScenedesmus abundansSoftSCEdimorScenedesmus dimorphusSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPLspSpirogyra sp.SoftSPLspSpirolyra sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTRspTrachelomonas sp.SoftTRspTribonema sp.SoftUNcentCentric diatomsSoftVLagaCladophoraceaeSoftXCLalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXEUspUnknown alga sp.	Soft	RIVsp	Unknown Rivulariaceae
SoftSCEbijugScenedesmus bijugaSoftSCEdimorScenedesmus dimorphusSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRAspTrachelomonas sp.SoftSoftCentric diatomsSoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown alga sp.	Soft	SCEabund	Scenedesmus abundans
SoftSCEdimorScenedesmus dimorphusSoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown alga sp.	Soft	SCEbijug	Scenedesmus bijuga
SoftSCEquadrScenedesmus quadricaudaSoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPLspSpirogyra sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTETspTrachelomonas sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftVLcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXEUspUnknown alga sp.	Soft	SCEdimor	Scenedesmus dimorphus
SoftSCEspScenedesmus sp.SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXEUspUnknown alga sp.	Soft	SCEquadr	Scenedesmus quadricauda
SoftSCRsetigSchroderia setigeraSoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETspTetraedron sp.SoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SCEsp	Scenedesmus sp.
SoftSCZspSchizothrix sp.SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftUNcentCentric diatomsSoftVDpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SCRsetig	Schroderia setigera
SoftSPHspSphaerocystis sp.SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SCZsp	Schizothrix sp.
SoftSPIspSpirogyra sp.SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SPHsp	Sphaerocystis sp.
SoftSPLspSpirulina sp.SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SPIsp	Spirogyra sp.
SoftSTAspStaurastrum sp.SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SPLsp	Spirulina sp.
SoftSYCspSynechococcus sp.SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	STAsp	Staurastrum sp.
SoftTETminumTetraedron minimumSoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	SYCsp	Synechococcus sp.
SoftTETregulTetraedron regulareSoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	TETminum	Tetraedron minimum
SoftTETspTetraedron sp.SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	TETregul	Tetraedron regulare
SoftTRAspTrachelomonas sp.SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	TETsp	Tetraedron sp.
SoftTRIspTribonema sp.SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	TRAsp	Trachelomonas sp.
SoftUNcentCentric diatomsSoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	TRIsp	Tribonema sp.
SoftUNpenntePennate diatomsSoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	UNcent	Centric diatoms
SoftXCLalgaCladophoraceaeSoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	UNpennte	Pennate diatoms
SoftXDFalgaUnidentified dinoflagellatesSoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	XCLalga	Cladophoraceae
SoftXEUspUnknown Euglenophyte sp.SoftXXAspUnknown alga sp.	Soft	XDFalga	Unidentified dinoflagellates
Soft XXAsp Unknown alga sp.	Soft	XEUsp	Unknown Euglenophyte sp.
	Soft	XXAsp	Unknown alga sp.

Appendix A6. Taxa-specific results from Threshold Indicator Taxa Analysis (TITAN) on **algal species composition** in response to nutrient and nutrient-related stressors among 38 sites in **Ecoregion 29** during summer 2008. Only species that showed significant threshold declines or increases in response to predictors are included in this table. The observed (*Obs*) threshold value of predictors for each taxon is shown in bold, whereas lower (*10%*), middle (*50%*), and upper (*90%*) quantiles of 1,000 bootstraps represent measures of uncertainty around the observed threshold. *Z* represents the standardized indicator score from TITAN (larger numbers = stronger threshold response), *IndVal* is the unstandardized indicator score (scaled from 0-100%, with 100=perfect indicator). *Purity* is the relative consistency of the response direction among the 1,000 bootstraps (*purity* > 0.95 is significant). *P-value* is the likelihood of getting an equal or larger IndVal if the score were computed with random shuffling of the observed data (*P*<0.05 is significant). See Appendix A5 for full species names corresponding to *Taxon IDs*.

				Bootstrap threshold quantil					d quantiles	
		Threshold I	Response >							
Predictor	Taxon ID	(obs)	obs.	Z	IndVal	Р	Purity	10%	50%	90%
TP (ug/L)	COSsp	19.68	Decline	3.24	60.83	0.004	1.000	16.18	22.82	1069.33
TP (ug/L)	KIRsp	18.23	Decline	3.25	25.00	0.036	0.968	10.89	17.03	24.22
TP (ug/L)	MERglauc	21.43	Decline	6.79	75.84	0.004	1.000	16.18	19.68	28.95
TP (ug/L)	OSCsp	16.18	Decline	5.31	72.66	0.004	1.000	14.27	17.03	34.18
TP (ug/L)	PEDboryn	18.23	Decline	3.94	38.60	0.008	0.970	14.27	17.03	24.22
TP (ug/L)	SCZsp	125.08	Decline	3.41	53.13	0.004	0.968	30.18	125.08	1069.33
TP (ug/L)	GOmaclau	15.30	Decline	5.54	42.22	0.004	0.996	14.27	16.61	21.43
TP (ug/L)	GOintvib	17.03	Decline	6.04	51.61	0.004	1.000	12.44	17.03	24.22
TP (ug/L)	NAstroem	21.43	Decline	5.64	55.04	0.004	1.000	12.44	19.68	28.95
TP (ug/L)	BRvitrea	16.18	Decline	5.13	52.22	0.004	0.998	10.89	16.18	30.18
TP (ug/L)	CMlaevis	13.42	Decline	4.04	43.37	0.020	0.988	10.89	14.27	30.18
TP (ug/L)	NIampoid	15.30	Decline	3.11	37.15	0.016	0.978	14.27	19.05	52.08
TP (ug/L)	ALpelluc	34.18	Decline	3.46	28.57	0.012	0.982	13.42	24.22	44.68
TP (ug/L)	HAamphio	18.23	Decline	3.66	25.00	0.028	0.960	10.89	17.03	24.22
TP (ug/L)	NAcrypto	14.27	Decline	3.09	36.67	0.016	0.962	12.44	17.03	40.73
TP (ug/L)	CMdelcat	17.03	Decline	8.00	83.62	0.004	1.000	14.62	18.23	24.22
TP (ug/L)	SYacus	16.18	Decline	6.34	65.13	0.004	0.998	12.44	16.18	19.68

TP (ug/L)	GOclavat	24.22	Decline	6.56	63.98	0.004	1.000	14.62	19.68	28.95
TP (ug/L)	GOgracil	26.78	Decline	3.92	51.69	0.004	0.996	18.23	28.95	77.03
TP (ug/L)	NAradios	27.77	Decline	3.64	33.33	0.024	0.990	14.62	26.78	40.73
TP (ug/L)	FRcapuci	24.22	Decline	4.01	53.37	0.004	0.978	15.30	24.22	44.68
TP (ug/L)	CMaffins	34.18	Decline	4.31	48.22	0.004	0.972	16.18	28.95	52.08
TP (ug/L)	GOangstt	21.43	Decline	4.94	53.50	0.004	0.998	15.30	27.77	77.03
TP (ug/L)	CMkolbei	40.73	Decline	4.91	54.55	0.012	0.996	24.22	40.73	69.78
TP (ug/L)	EYevergl	21.43	Decline	6.45	73.80	0.004	1.000	19.05	26.78	40.73
TP (ug/L)	EYmicroc	21.43	Decline	6.24	66.95	0.004	1.000	16.10	19.68	40.73
TP (ug/L)	ACbiasol	21.43	Decline	4.44	62.28	0.004	0.980	17.03	26.78	52.08
TP (ug/L)	DEkuetzi	21.43	Decline	5.82	67.48	0.004	1.000	14.27	19.05	34.18
TP (ug/L)	AHminuti	52.08	Decline	6.40	76.47	0.004	1.000	19.05	44.68	125.08
TP (ug/L)	ECsilesi	10.89	Decline	2.91	71.27	0.004	0.958	12.44	34.18	770.33
TP (ug/L)	SYulna	69.78	Decline	3.78	65.87	0.004	0.958	28.95	77.03	1069.33
TP (ug/L)	ANKsp	44.68	Increase	4.06	46.27	0.004	0.960	28.95	44.68	932.17
TP (ug/L)	CHRsp	30.18	Increase	4.98	44.44	0.004	1.000	26.78	34.18	598.33
TP (ug/L)	SCEquadr	932.17	Increase	8.93	60.00	0.004	0.954	368.33	1069.33	1235.00
TP (ug/L)	XXAsp	10.89	Increase	2.80	70.59	0.020	0.970	12.44	17.03	932.17
TP (ug/L)	NAsubmin	1235.00	Increase	5.45	63.31	0.012	0.958	40.73	1069.33	1235.00
TP (ug/L)	AMveneta	125.08	Increase	6.36	50.00	0.004	0.996	61.90	368.33	1069.33
TP (ug/L)	GMgrovei	125.08	Increase	3.12	26.09	0.024	0.968	28.95	125.08	1235.00
TP (ug/L)	ROabbre	69.78	Increase	4.98	33.33	0.004	0.986	44.68	77.03	598.33
TP (ug/L)	FRellptc	52.08	Increase	4.99	40.94	0.004	0.988	28.95	69.78	1069.33
TP (ug/L)	TEmusica	26.78	Increase	2.83	28.57	0.028	0.964	19.05	27.77	187.50
TP (ug/L)	NItropic	44.68	Increase	3.64	26.67	0.024	0.980	28.95	52.08	1235.00
TP (ug/L)	NIcombal	44.68	Increase	6.02	46.67	0.004	0.996	30.18	52.08	125.08
TP (ug/L)	NIangtu	30.18	Increase	3.39	27.78	0.016	0.986	26.78	52.08	1069.33
TP (ug/L)	AMsabina	44.68	Increase	3.97	46.37	0.004	0.982	21.43	52.08	1235.00
TP (ug/L)	GMlinfor	26.78	Increase	4.88	42.86	0.004	1.000	23.94	44.68	368.33
TP (ug/L)	TYapicul	26.78	Increase	2.86	35.81	0.016	0.968	19.05	28.95	69.78

TP (ug/L)	FAtener2	52.08	Increase	5.35	42.86	0.004	1.000	30.18	52.08	125.08
TP (ug/L)	NIsolita	1069.33	Increase	3.49	58.80	0.020	0.990	19.05	40.73	1235.00
TP (ug/L)	PCplacen	1235.00	Increase	5.51	89.33	0.008	0.998	30.06	125.08	1235.00
TP (ug/L)	PRlaevis	125.08	Increase	7.53	83.50	0.004	1.000	44.68	77.03	598.33
TP (ug/L)	AMpedcls	69.78	Increase	5.20	66.56	0.004	1.000	18.23	44.68	187.50
TP (ug/L)	AHexigum	40.73	Increase	4.99	60.69	0.004	1.000	18.23	28.95	598.33
TP (ug/L)	HIhunga	44.68	Increase	6.55	59.75	0.004	0.994	30.18	52.08	187.50
TP (ug/L)	NAsancru	34.18	Increase	5.90	50.29	0.004	1.000	26.78	40.73	77.03
TP (ug/L)	DIconfer	21.43	Increase	7.60	81.10	0.004	1.000	18.23	24.22	77.03
TP (ug/L)	NIincons	30.18	Increase	6.46	69.20	0.004	1.000	16.18	21.43	34.18
TP (ug/L)	NIfrustu	40.73	Increase	4.46	59.56	0.004	0.992	18.23	30.18	598.33
TP (ug/L)	GOpumilu	16.18	Increase	3.58	56.89	0.008	0.964	13.42	17.03	69.78
TP (ug/L)	NArecens	24.22	Increase	6.16	68.71	0.004	1.000	19.05	26.78	40.73
TP (ug/L)	REsinuta	69.78	Increase	3.22	59.41	0.020	0.990	14.62	34.18	131.32
TP (ug/L)	NAkotsch	28.95	Increase	2.86	48.89	0.012	0.988	17.03	34.18	1069.33
TP (ug/L)	CYmenegh	19.05	Increase	3.95	63.65	0.004	0.990	16.18	24.22	125.08
TP (ug/L)	CCplacen	17.03	Increase	6.34	76.98	0.004	0.996	13.42	17.03	21.43
TP (ug/L)	AMlibyca	30.18	Increase	3.14	57.13	0.008	0.972	17.03	27.77	77.03
TP (ug/L)	GOparvul	14.27	Increase	6.10	87.47	0.004	1.000	10.89	14.62	24.22
TP (ug/L)	NIamphib	10.89	Increase	3.01	65.58	0.024	0.984	10.89	12.44	77.03
TN (ug/L)	MERglauc	271.00	Decline	3.62	60.35	0.012	0.998	261.83	295.67	490.67
TN (ug/L)	OSCsp	490.67	Decline	4.60	61.48	0.004	0.994	280.17	440.83	633.33
TN (ug/L)	NAstroem	271.00	Decline	4.70	55.80	0.008	1.000	249.67	295.67	525.83
TN (ug/L)	BRvitrea	266.00	Decline	4.18	51.54	0.008	0.996	238.83	280.17	490.67
TN (ug/L)	ALpelluc	249.67	Decline	3.74	44.66	0.008	0.992	225.33	266.00	525.83
TN (ug/L)	CMdelcat	328.17	Decline	5.17	54.22	0.004	0.982	266.00	328.17	525.83
TN (ug/L)	SYacus	362.00	Decline	4.72	46.18	0.008	0.990	261.83	328.17	455.45
TN (ug/L)	RPgibba	362.00	Decline	2.91	43.12	0.016	0.986	266.00	402.50	918.17
TN (ug/L)	GOangstt	546.17	Decline	3.27	42.21	0.012	0.996	238.83	454.67	918.17
TN (ug/L)	EYevergl	384.67	Decline	5.56	68.35	0.004	0.994	294.12	402.50	918.17

TN (ug/L)	EYmicroc	328.17	Decline	5.84	67.33	0.004	0.996	261.83	328.17	440.83
TN (ug/L)	ACbiasol	295.67	Decline	5.65	68.51	0.004	1.000	249.67	280.17	494.18
TN (ug/L)	DEkuetzi	261.83	Decline	4.92	72.56	0.004	0.998	248.58	271.00	800.17
TN (ug/L)	AHminuti	328.17	Decline	5.75	71.94	0.004	1.000	295.67	420.17	1195.50
TN (ug/L)	ECsilesi	249.67	Decline	3.17	68.76	0.012	0.982	238.83	280.17	1891.67
TN (ug/L)										
TN (ug/L)	CHRsp	420.17	Increase	4.01	36.36	0.012	0.998	384.67	462.50	918.17
TN (ug/L)	AMveneta	5723.33	Increase	4.87	63.03	0.004	0.992	462.50	1891.67	5723.33
TN (ug/L)	NIcombal	440.83	Increase	3.48	33.33	0.020	0.994	402.50	462.50	1016.00
TN (ug/L)	GMlinfor	384.67	Increase	2.99	37.50	0.016	0.988	328.17	440.83	2393.33
TN (ug/L)	NIsolita	454.67	Increase	3.79	41.80	0.004	0.994	362.00	458.58	2393.33
TN (ug/L)	PCplacen	5723.33	Increase	2.75	55.35	0.024	0.986	384.67	1195.50	5723.33
TN (ug/L)	PRlaevis	1195.50	Increase	6.81	68.44	0.004	1.000	633.33	1891.67	3603.33
TN (ug/L)	AMpedcls	462.50	Increase	4.75	60.12	0.004	0.998	384.67	462.50	918.17
TN (ug/L)	NAsancru	440.83	Increase	3.70	39.66	0.004	0.980	295.67	420.17	633.33
TN (ug/L)	DIconfer	1891.67	Increase	5.29	77.39	0.004	1.000	271.00	867.83	2393.33
TN (ug/L)	NIincons	440.83	Increase	5.21	63.99	0.004	1.000	271.00	420.17	806.93
TN (ug/L)	NArecens	328.17	Increase	3.61	56.35	0.008	0.990	271.00	384.67	1016.00
TN (ug/L)	GOparvul	261.83	Increase	3.59	68.08	0.004	1.000	238.83	295.67	867.83
C:P (bulk)	CHRsp	183.72	Decline	5.21	44.44	0.004	1.000	133.26	182.03	312.80
C:P (bulk)	SCEquadr	124.70	Decline	5.59	33.33	0.008	0.950	95.50	118.40	147.69
C:P (bulk)	AMveneta	159.00	Decline	5.09	38.46	0.008	0.996	100.55	124.70	170.90
C:P (bulk)	GMgrovei	178.01	Decline	2.79	25.00	0.040	0.976	110.49	134.04	183.72
C:P (bulk)	ROabbre	165.95	Decline	3.98	28.57	0.020	0.976	95.50	147.69	182.03
C:P (bulk)	FRellptc	159.00	Decline	4.78	44.31	0.004	1.000	95.50	147.69	191.55
C:P (bulk)	NIcombal	170.90	Decline	4.20	35.51	0.008	1.000	100.55	170.90	245.12
C:P (bulk)	THsp	191.55	Decline	3.13	26.32	0.044	0.990	118.40	182.03	334.10
C:P (bulk)	NIangtu	183.72	Decline	3.22	27.78	0.020	0.990	95.50	134.04	245.12
C:P (bulk)	GMlinfor	182.03	Decline	6.08	52.94	0.004	1.000	124.70	170.90	245.12

C:P (bulk)	FAtener2	165.95	Decline	3.96	32.68	0.008	0.996	95.50	165.95	245.12
C:P (bulk)	PCplacen	126.22	Decline	3.84	41.51	0.020	0.974	100.55	126.22	183.72
C:P (bulk)	PRlaevis	159.00	Decline	8.13	73.53	0.004	1.000	118.40	134.04	170.90
C:P (bulk)	AMpedcls	334.10	Decline	5.43	65.98	0.004	1.000	178.01	312.80	341.09
C:P (bulk)	AHexigum	134.04	Decline	2.78	51.31	0.024	0.960	95.50	159.00	350.49
C:P (bulk)	HIhunga	165.95	Decline	5.49	54.83	0.004	1.000	100.55	134.04	183.72
C:P (bulk)	NAsancru	159.00	Decline	4.34	44.46	0.004	1.000	110.49	182.03	338.25
C:P (bulk)	DIconfer	134.04	Decline	6.80	80.28	0.004	1.000	121.16	159.00	183.72
C:P (bulk)	NIincons	334.10	Decline	6.22	73.56	0.004	1.000	178.01	334.10	350.49
C:P (bulk)	NIfrustu	334.10	Decline	3.25	51.91	0.004	0.986	100.55	170.90	363.95
C:P (bulk)	NArecens	183.72	Decline	5.09	60.14	0.008	0.996	110.49	178.01	334.27
C:P (bulk)	REsinuta	338.25	Decline	5.28	69.94	0.004	0.998	331.97	350.49	406.22
C:P (bulk)	CYmenegh	462.85	Decline	2.78	63.64	0.020	0.994	110.49	191.55	406.22
C:P (bulk)	CCplacen	335.81	Decline	6.15	73.01	0.004	1.000	245.12	340.04	438.57
C:P (bulk)	GOparvul	312.80	Decline	5.42	67.53	0.004	1.000	191.55	338.25	462.85
C:P (bulk)	NIamphib	406.22	Decline	2.79	60.55	0.004	0.950	118.40	390.09	562.94
C:P (bulk)	KIRsp	363.95	Increase	3.68	27.27	0.028	0.950	191.55	363.95	462.85
C:P (bulk)	MERglauc	312.80	Increase	5.04	62.86	0.004	1.000	182.03	335.81	390.09
C:P (bulk)	OSCsp	245.12	Increase	3.71	54.74	0.004	0.958	159.00	191.55	368.01
C:P (bulk)	SCZsp	191.55	Increase	3.79	52.76	0.004	1.000	126.22	183.72	390.09
C:P (bulk)	GOmaclau	462.85	Increase	5.09	55.01	0.008	0.996	334.10	390.09	562.94
C:P (bulk)	GOintvib	462.85	Increase	5.70	71.27	0.004	0.998	334.10	438.57	562.94
C:P (bulk)	NAstroem	368.01	Increase	4.54	47.86	0.008	1.000	165.95	312.80	390.09
C:P (bulk)	BRvitrea	245.12	Increase	5.50	50.00	0.004	1.000	182.03	323.45	406.22
C:P (bulk)	CMlaevis	562.94	Increase	4.36	61.04	0.020	0.982	182.03	498.33	562.94
C:P (bulk)	NIampoid	183.72	Increase	2.26	28.06	0.048	0.952	165.26	323.45	562.94
C:P (bulk)	ALpelluc	350.49	Increase	2.46	27.93	0.016	0.972	165.26	334.10	376.04
C:P (bulk)	HAamphio	350.49	Increase	3.27	25.00	0.040	0.956	334.10	363.95	498.33
C:P (bulk)	CMdelcat	334.10	Increase	4.95	54.08	0.004	0.996	245.12	368.01	462.85
C:P (bulk)	SYacus	245.12	Increase	6.59	50.00	0.004	1.000	183.72	335.81	406.22

C:P (bulk)	GOclavat	562.94	Increase	2.79	74.97	0.036	0.980	134.04	334.10	498.33
C:P (bulk)	GOgracil	390.09	Increase	3.86	56.62	0.004	0.996	147.69	312.80	438.57
C:P (bulk)	CMaffins	165.95	Increase	3.47	40.94	0.012	0.960	134.04	182.03	462.85
C:P (bulk)	CMkolbei	165.95	Increase	3.31	41.87	0.012	0.986	126.22	170.90	334.10
C:P (bulk)	EYevergl	182.03	Increase	6.58	72.79	0.004	1.000	147.69	178.01	312.80
C:P (bulk)	EYmicroc	312.80	Increase	6.00	67.01	0.004	1.000	182.03	334.10	376.04
C:P (bulk)	PIgibba	170.90	Increase	4.00	39.13	0.008	0.996	165.26	191.55	438.57
C:P (bulk)	NAcryten	340.04	Increase	3.44	42.54	0.008	0.992	159.00	350.49	562.94
C:P (bulk)	DEkuetzi	335.81	Increase	7.49	75.32	0.004	1.000	182.03	335.81	363.95
C:P (bulk)	GOaffine	390.09	Increase	2.32	60.46	0.032	0.954	95.50	334.10	406.22
C:P (bulk)	AHminuti	165.95	Increase	6.18	74.83	0.004	0.996	124.70	165.95	183.72
C:P (OM)	CHRsp	165.20	Decline	7.50	54.90	0.004	0.996	153.44	165.20	177.05
C:P (OM)	GLKturf	153.44	Decline	3.53	33.49	0.036	0.984	137.69	155.31	180.64
C:P (OM)	SCEquadr	147.31	Decline	3.68	25.76	0.024	0.968	131.40	156.76	177.05
C:P (OM)	AMveneta	147.31	Decline	4.22	38.61	0.012	0.968	131.40	153.44	185.75
C:P (OM)	FRellptc	147.31	Decline	4.49	49.84	0.008	0.996	137.69	155.31	183.77
C:P (OM)	NIcombal	137.69	Decline	3.41	51.99	0.016	0.998	131.40	155.31	193.47
C:P (OM)	NAtrivis	156.76	Decline	4.21	35.64	0.008	0.978	147.31	161.63	182.03
C:P (OM)	NIangtu	166.54	Decline	4.89	35.71	0.004	0.992	147.31	165.20	177.05
C:P (OM)	GMlinfor	216.60	Decline	3.25	37.50	0.024	0.986	141.18	182.03	227.15
C:P (OM)	FAtener2	156.76	Decline	4.57	46.88	0.012	0.998	131.40	156.76	180.64
C:P (OM)	NIsolita	141.57	Decline	3.60	53.05	0.012	0.996	131.40	156.76	225.08
C:P (OM)	PRlaevis	137.69	Decline	4.32	66.41	0.012	0.996	137.69	165.37	193.47
C:P (OM)	AMpedcls	225.08	Decline	4.01	57.32	0.008	0.988	176.64	205.26	228.73
C:P (OM)	AHexigum	156.76	Decline	4.86	67.63	0.004	0.998	153.44	166.54	227.15
C:P (OM)	HIhunga	169.17	Decline	4.62	50.60	0.008	0.970	131.40	166.54	183.77
C:P (OM)	NAsancru	182.03	Decline	3.22	37.69	0.008	0.970	172.88	193.47	227.99
C:P (OM)	DIconfer	225.08	Decline	5.33	64.66	0.004	0.996	155.31	193.47	228.73
C:P (OM)	NIincons	225.08	Decline	6.11	73.68	0.004	1.000	177.05	216.60	244.77
C:P (OM)	NIfrustu	225.08	Decline	3.71	59.62	0.008	0.966	180.64	216.60	244.77

C:P (OM)	NArecens	161.63	Decline	4.61	61.85	0.004	1.000	156.76	182.03	227.99
C:P (OM)	CYmenegh	216.60	Decline	3.56	54.86	0.004	0.962	147.31	193.47	244.77
C:P (OM)	CCplacen	225.08	Decline	5.24	71.99	0.004	0.986	182.03	205.26	246.50
C:P (OM)	GOparvul	227.15	Decline	6.03	77.60	0.004	1.000	193.47	227.99	288.83
C:P (OM)	NIamphib	288.83	Decline	3.45	64.03	0.008	0.980	155.12	273.82	298.29
C:P (OM)	MERglauc	225.08	Increase	6.17	71.16	0.004	1.000	166.54	193.47	227.99
C:P (OM)	OSCsp	244.77	Increase	4.99	69.93	0.004	0.988	193.47	227.99	264.51
C:P (OM)	PEDboryn	183.77	Increase	4.20	33.33	0.012	0.998	182.03	216.60	264.51
C:P (OM)	SCZsp	185.75	Increase	2.92	52.32	0.004	0.970	155.12	185.75	227.15
C:P (OM)	GOmaclau	216.60	Increase	5.11	35.71	0.004	0.996	193.47	244.77	298.29
C:P (OM)	NAstroem	227.99	Increase	3.19	43.86	0.012	0.984	165.20	227.15	288.83
C:P (OM)	BRvitrea	216.60	Increase	4.27	41.35	0.008	0.998	166.54	216.60	288.83
C:P (OM)	CMdelcat	225.08	Increase	7.02	69.18	0.004	0.994	185.75	225.08	262.07
C:P (OM)	SYacus	193.47	Increase	6.66	56.25	0.004	1.000	182.03	216.60	288.83
C:P (OM)	GOclavat	244.77	Increase	4.36	59.30	0.004	0.964	172.88	227.15	273.82
C:P (OM)	GOgracil	180.64	Increase	6.28	64.96	0.004	1.000	166.54	182.03	216.60
C:P (OM)	NAradios	182.03	Increase	4.29	31.58	0.004	0.992	172.88	183.77	244.77
C:P (OM)	FRcapuci	165.20	Increase	4.09	56.33	0.004	0.974	155.31	166.54	227.99
C:P (OM)	EYevergl	216.60	Increase	4.32	61.76	0.004	0.988	155.31	193.47	262.07
C:P (OM)	EYmicroc	216.60	Increase	4.67	55.91	0.004	0.994	168.91	227.15	273.82
C:P (OM)	PIgibba	225.08	Increase	2.68	34.61	0.024	0.976	169.17	205.26	273.82
C:P (OM)	ACbiasol	165.20	Increase	3.37	54.25	0.016	0.990	161.63	227.15	295.89
C:P (OM)	NAcryten	166.54	Increase	3.41	41.95	0.012	0.978	156.76	169.17	288.83
C:P (OM)	DEkuetzi	227.15	Increase	4.01	59.99	0.008	0.994	152.83	205.26	244.77
C:P (OM)	AHminuti	244.77	Increase	4.67	68.79	0.004	1.000	141.57	205.26	262.07
C:P (OM)	ECsilesi	273.82	Increase	3.36	68.76	0.008	0.990	165.55	262.07	288.83
Pasture (%)	GLHsp	3.08	Decline	3.11	58.21	0.004	0.996	2.11	4.47	13.17
Pasture (%)	MERglauc	2.58	Decline	3.29	53.58	0.012	0.990	0.77	2.11	7.76

Pasture (%)	SCEbijug	2.81	Decline	4.17	43.30	0.004	0.982	1.58	2.81	4.47
Pasture (%)	SPHsp	8.61	Decline	3.59	53.94	0.004	0.956	2.81	8.61	11.53
Pasture (%)	GOmaclau	2.11	Decline	4.77	35.71	0.004	0.992	0.68	1.54	2.81
Pasture (%)	NAstroem	5.83	Decline	3.27	38.49	0.004	0.982	0.68	2.11	7.05
Pasture (%)	BRvitrea	5.83	Decline	4.25	40.91	0.004	1.000	0.68	1.58	7.05
Pasture (%)	NIampoid	1.79	Decline	5.75	42.01	0.004	1.000	0.77	1.54	3.08
Pasture (%)	CMdelcat	0.77	Decline	5.58	84.70	0.004	0.976	0.68	0.93	2.58
Pasture (%)	SYacus	1.79	Decline	5.29	49.49	0.004	1.000	0.68	1.52	3.75
Pasture (%)	GOclavat	2.11	Decline	5.29	57.64	0.004	0.998	0.77	1.54	3.08
Pasture (%)	GOgracil	4.47	Decline	4.44	53.63	0.004	0.996	1.54	3.26	8.42
Pasture (%)	CMkolbei	3.08	Decline	4.93	49.71	0.004	0.974	1.58	3.08	6.89
Pasture (%)	EYevergl	0.77	Decline	3.66	75.83	0.004	0.986	0.77	1.54	5.83
Pasture (%)	EYmicroc	1.46	Decline	6.14	72.39	0.004	0.994	0.77	1.46	2.58
Pasture (%)	NAcryten	1.58	Decline	3.32	45.34	0.016	0.990	1.39	2.11	7.05
Pasture (%)	DEkuetzi	3.75	Decline	3.54	54.69	0.012	0.990	0.77	2.81	8.42
Pasture (%)	AHminuti	1.79	Decline	4.89	65.57	0.004	0.986	1.46	2.42	5.83
Pasture (%)										
Pasture (%)	ROabbre	7.76	Increase	4.40	30.77	0.008	0.992	3.75	7.76	9.79
Pasture (%)	TEmusica	12.64	Increase	6.39	67.16	0.008	0.996	8.42	11.53	12.64
Pasture (%)	NIcombal	7.76	Increase	6.39	53.85	0.004	1.000	4.47	8.42	10.87
Pasture (%)	NIangtu	11.53	Increase	5.69	54.42	0.008	0.996	7.05	10.87	12.64
Pasture (%)	GMlinfor	8.42	Increase	6.86	60.67	0.004	0.996	6.89	8.61	12.33
Pasture (%)	TYapicul	6.89	Increase	5.48	48.99	0.004	0.998	3.75	8.42	12.36
Pasture (%)	NIangust	9.79	Increase	4.61	55.07	0.008	0.998	3.75	8.82	12.64
Pasture (%)	FAtener2	6.89	Increase	5.41	40.00	0.004	0.998	3.75	7.05	10.87
Pasture (%)	NIsolita	12.64	Increase	3.11	61.67	0.020	0.994	1.58	8.61	12.64
Pasture (%)	NAminima	9.79	Increase	4.54	53.49	0.008	0.994	1.58	8.42	12.07
Pasture (%)	PRlaevis	5.83	Increase	4.10	50.23	0.008	0.992	2.58	6.89	8.82
Pasture (%)	AMpedcls	2.58	Increase	4.21	51.80	0.004	1.000	1.79	3.75	11.53
Pasture (%)	TYlevide	7.05	Increase	3.96	38.56	0.012	0.988	2.58	7.05	10.87
Pasture (%)	AHexigum	2.58	Increase	3.20	51.42	0.016	0.992	0.93	2.42	9.79

Pasture (%)	HIhunga	1.54	Increase	3.67	44.44	0.008	1.000	1.58	6.89	12.07
Pasture (%)	NAsancru	4.47	Increase	5.54	50.29	0.004	1.000	2.79	5.83	9.79
Pasture (%)	DIconfer	12.07	Increase	4.37	74.93	0.004	1.000	1.46	4.47	12.07
Pasture (%)	NIincons	10.87	Increase	4.88	71.94	0.004	1.000	2.58	8.42	12.07
Pasture (%)	GOpumilu	1.58	Increase	3.11	52.52	0.012	0.988	1.39	2.58	9.79
Pasture (%)	DPellipt	12.64	Increase	3.21	68.42	0.020	0.960	1.54	6.89	12.64
Pasture (%)	NArecens	10.87	Increase	6.53	80.05	0.004	1.000	5.83	8.82	12.07
Pasture (%)	REsinuta	3.75	Increase	3.76	58.41	0.004	0.974	2.42	5.83	8.82
Pasture (%)	CCplacen	4.47	Increase	5.21	67.39	0.004	1.000	0.93	3.26	6.89
Pasture (%)	GOparvul	1.21	Increase	3.65	71.18	0.004	0.982	0.68	1.21	6.89
Pasture (%)	NIamphib	0.93	Increase	6.44	70.59	0.004	0.988	0.68	0.93	1.52
Mud-silt (%)	MERglauc	0.00	Decline	3.87	55.10	0.008	0.966	0.00	1.50	10.00
Mud-silt (%)	PEDboryn	0.00	Decline	3.74	37.91	0.008	0.986	0.00	2.20	7.50
Mud-silt (%)	SCEbijug	0.00	Decline	4.07	42.49	0.004	0.996	0.00	0.00	7.28
Mud-silt (%)	CMdelcat	0.20	Decline	4.42	48.20	0.004	0.994	0.00	0.92	7.50
Mud-silt (%)	SYacus	0.62	Decline	4.16	38.60	0.008	0.992	0.00	0.62	7.25
Mud-silt (%)	GOclavat	7.25	Decline	5.17	55.64	0.004	0.994	0.00	2.45	8.88
Mud-silt (%)	GOgracil	8.75	Decline	2.75	44.76	0.032	0.958	0.00	6.00	15.00
Mud-silt (%)	EYevergl	6.00	Decline	3.62	57.37	0.008	0.966	0.00	3.75	15.00
Mud-silt (%)	DEkuetzi	7.25	Decline	3.69	53.15	0.008	0.988	0.00	2.45	12.50
Mud-silt (%)	SYulna	8.75	Decline	3.71	63.68	0.004	0.968	0.00	7.50	15.42
Mud-silt (%)	GLKturf	17.75	Increase	6.32	47.83	0.004	0.952	3.75	17.75	27.42
Mud-silt (%)	CSdubius	16.04	Increase	5.61	37.50	0.008	0.950	10.00	16.04	18.17
Mud-silt (%)	NIangtu	3.75	Increase	3.65	29.41	0.004	0.996	2.20	7.50	15.42
Mud-silt (%)	TYapicul	15.42	Increase	2.97	44.99	0.028	0.950	2.20	16.04	21.17
Mud-silt (%)	CAsilicu	18.17	Increase	3.09	48.70	0.020	0.990	1.50	16.88	27.42
Mud-silt (%)	NAminima	15.42	Increase	4.32	56.09	0.004	0.962	3.75	15.00	17.75
Mud-silt (%)	AMpedcls	8.75	Increase	5.35	61.76	0.004	1.000	2.20	8.75	18.17
Mud-silt (%)	NAsancru	21.17	Increase	2.82	59.91	0.020	0.978	1.50	15.00	27.42

Mud-silt (%)	NIincons	8.75	Increase	5.18	68.54	0.008	1.000	0.92	7.25	15.00
Mud-silt (%)	GOpumilu	3.75	Increase	5.20	59.50	0.004	0.966	0.62	3.75	10.00
Mud-silt (%)	NArecens	10.00	Increase	6.15	71.83	0.008	0.996	3.75	10.00	16.04
Mud-silt (%)	REsinuta	12.50	Increase	5.09	70.16	0.004	0.996	6.00	12.50	16.04
Mud-silt (%)	CAbacill	17.75	Increase	4.27	72.70	0.008	0.984	7.13	16.88	21.17
Mud-silt (%)	CCplacen	0.00	Increase	4.46	63.69	0.008	1.000	0.00	7.25	15.00
Mud-silt (%)	GOparvul	8.75	Increase	3.75	61.63	0.012	0.990	0.00	7.25	15.00
Outfalls (MGD)	SCZsp	5.69	Decline	3.95	55.45	0.004	0.994	0.01	4.55	6.41
Outfalls (MGD)	UNpennte	4.92	Decline	3.89	59.63	0.004	0.968	1.22	4.15	5.69
Outfalls (MGD)	GOmaclau	0.32	Decline	3.12	26.32	0.036	0.968	0.01	0.18	0.94
Outfalls (MGD)	CTellipt	0.01	Decline	3.86	31.83	0.016	0.966	0.01	0.06	0.44
Outfalls (MGD)	FRtenera	0.08	Decline	3.84	31.25	0.008	0.996	0.01	0.03	0.32
Outfalls (MGD)	GOintvib	0.94	Decline	2.85	30.43	0.016	0.982	0.01	0.44	1.22
Outfalls (MGD)	EPturgid	0.94	Decline	2.71	30.43	0.044	0.992	0.01	0.44	1.22
Outfalls (MGD)	NAstroem	0.08	Decline	5.41	51.11	0.004	1.000	0.01	0.08	0.81
Outfalls (MGD)	BRvitrea	0.08	Decline	3.03	36.83	0.016	0.958	0.01	0.06	1.03
Outfalls (MGD)	CMlaevis	0.01	Decline	6.17	41.67	0.004	0.992	0.01	0.01	0.10
Outfalls (MGD)	ALpelluc	0.01	Decline	3.30	33.65	0.024	0.990	0.01	0.06	0.94
Outfalls (MGD)	CMdelcat	0.58	Decline	4.49	51.23	0.004	1.000	0.06	0.69	3.26
Outfalls (MGD)	SYacus	0.32	Decline	3.77	40.29	0.012	0.990	0.01	0.14	0.81
Outfalls (MGD)	GOclavat	0.58	Decline	4.63	52.23	0.004	0.994	0.06	0.44	3.51
Outfalls (MGD)	NAradios	0.06	Decline	3.32	30.31	0.012	0.992	0.01	0.08	0.81
Outfalls (MGD)	FRcapuci	0.44	Decline	3.70	52.92	0.008	0.980	0.01	0.18	1.03
Outfalls (MGD)	BApardxa	0.01	Decline	3.07	23.08	0.036	0.960	0.01	0.01	0.08
Outfalls (MGD)	CMaffins	0.18	Decline	4.36	47.62	0.004	0.990	0.01	0.10	0.94
Outfalls (MGD)	GOangstt	0.94	Decline	3.93	50.14	0.012	0.994	0.08	0.58	3.26
Outfalls (MGD)	CMkolbei	0.94	Decline	3.31	45.56	0.012	0.986	0.01	0.58	2.17
Outfalls (MGD)	EYevergl	0.06	Decline	5.35	64.86	0.004	1.000	0.01	0.18	1.22
Outfalls (MGD)	EYmicroc	1.22	Decline	4.22	58.09	0.004	0.994	0.03	0.81	3.26
Outfalls (MGD)	ACbiasol	0.01	Decline	4.95	67.93	0.004	0.998	0.01	0.10	3.26

Outfalls (MGD)	NAcryten	0.01	Decline	4.42	52.57	0.004	0.982	0.01	0.01	0.32
Outfalls (MGD)	DEkuetzi	0.08	Decline	6.02	71.15	0.004	0.998	0.01	0.08	0.58
Outfalls (MGD)	AHminuti	0.08	Decline	7.17	77.47	0.004	1.000	0.01	0.18	2.28
Outfalls (MGD)	ECsilesi	3.51	Decline	3.56	64.13	0.008	0.984	0.32	2.17	4.15
Outfalls (MGD)	CHRsp	5.69	Increase	6.83	88.44	0.004	1.000	0.44	4.55	6.41
Outfalls (MGD)	SCEquadr	4.15	Increase	8.62	42.86	0.008	0.964	3.51	4.55	6.41
Outfalls (MGD)	AMveneta	6.41	Increase	7.35	93.02	0.004	0.994	1.22	4.92	6.41
Outfalls (MGD)	GMgrovei	6.41	Increase	4.32	61.00	0.024	0.976	0.44	5.69	6.41
Outfalls (MGD)	ROabbre	2.17	Increase	4.51	33.33	0.012	0.986	0.58	2.17	4.55
Outfalls (MGD)	FRellptc	3.26	Increase	3.48	39.10	0.012	0.958	0.32	3.26	6.41
Outfalls (MGD)	TEmusica	0.32	Increase	3.44	31.58	0.024	0.992	0.08	0.44	4.92
Outfalls (MGD)	NIcombal	0.32	Increase	4.44	36.84	0.004	0.998	0.10	0.58	2.17
Outfalls (MGD)	NIangtu	0.81	Increase	4.03	31.25	0.004	0.994	0.18	0.87	3.51
Outfalls (MGD)	GMlinfor	0.32	Increase	5.33	47.37	0.004	1.000	0.08	0.81	6.41
Outfalls (MGD)	NIangust	0.06	Increase	4.00	39.13	0.008	0.992	0.01	0.18	1.03
Outfalls (MGD)	FAtener2	1.22	Increase	4.36	35.64	0.008	0.982	0.18	0.87	3.51
Outfalls (MGD)	NIsolita	0.08	Increase	4.36	45.45	0.008	1.000	0.01	0.10	1.22
Outfalls (MGD)	PRlaevis	5.69	Increase	4.38	80.36	0.004	0.994	0.44	3.89	6.41
Outfalls (MGD)	AMpedcls	0.81	Increase	5.75	57.62	0.004	0.996	0.03	0.44	1.22
Outfalls (MGD)	HIhunga	1.22	Increase	4.02	47.88	0.004	0.968	0.01	0.94	3.51
Outfalls (MGD)	NAsancru	0.44	Increase	6.47	55.56	0.004	1.000	0.10	0.58	2.17
Outfalls (MGD)	DIconfer	3.26	Increase	5.61	76.18	0.004	1.000	0.18	2.17	3.63
Outfalls (MGD)	GOpumilu	1.22	Increase	5.18	63.21	0.004	0.980	0.32	1.03	3.51
Outfalls (MGD)	NArecens	0.32	Increase	5.97	62.84	0.004	0.980	0.06	0.32	1.03
Outfalls (MGD)	REsinuta	0.58	Increase	3.53	59.25	0.004	0.994	0.01	0.32	2.17
Outfalls (MGD)	CCplacen	0.18	Increase	5.72	69.16	0.004	1.000	0.06	0.32	0.94
Outfalls (MGD)	GOparvul	0.18	Increase	3.42	58.98	0.012	0.972	0.01	0.06	0.58
Chloride (mg/L)	GLHsp	18.50	Decline	2.41	57.17	0.004	0.982	13.50	18.00	35.00
Chloride (mg/L)	MERglauc	19.50	Decline	7.94	77.50	0.004	0.998	18.00	20.50	26.50

Chloride (mg/L)	OSCsp	21.50	Decline	3.29	55.89	0.004	0.968	18.00	24.00	72.50
Chloride (mg/L)	GOmaclau	20.50	Decline	3.21	29.41	0.020	0.994	11.00	18.50	24.00
Chloride (mg/L)	GOintvib	26.00	Decline	3.87	35.00	0.012	0.992	18.00	21.50	30.00
Chloride (mg/L)	NAstroem	20.50	Decline	6.70	58.82	0.004	1.000	17.00	19.50	26.00
Chloride (mg/L)	BRvitrea	20.50	Decline	4.83	45.89	0.004	0.998	18.00	20.50	28.50
Chloride (mg/L)	CMlaevis	18.00	Decline	5.33	41.67	0.004	0.998	11.50	15.00	19.50
Chloride (mg/L)	NIampoid	20.50	Decline	3.12	33.60	0.012	0.992	13.50	19.00	28.50
Chloride (mg/L)	ALpelluc	26.00	Decline	3.32	30.00	0.004	0.956	10.50	24.00	30.10
Chloride (mg/L)	NAcrypto	30.00	Decline	2.41	26.09	0.020	0.964	13.50	24.00	31.00
Chloride (mg/L)	CMdelcat	20.50	Decline	5.18	57.82	0.004	1.000	15.00	20.50	30.00
Chloride (mg/L)	SYacus	20.50	Decline	2.75	35.21	0.020	0.984	18.00	24.00	60.50
Chloride (mg/L)	GOclavat	24.00	Decline	4.53	51.07	0.008	0.990	13.50	18.50	26.00
Chloride (mg/L)	GOgracil	69.00	Decline	3.72	53.57	0.004	0.998	13.50	31.00	73.50
Chloride (mg/L)	NAradios	12.50	Decline	4.30	45.70	0.004	0.998	11.00	15.00	21.50
Chloride (mg/L)	FRcapuci	26.00	Decline	5.01	59.78	0.004	0.994	13.50	21.50	31.00
Chloride (mg/L)	CMaffins	18.00	Decline	5.90	56.70	0.004	0.996	11.50	17.00	26.00
Chloride (mg/L)	GOangstt	12.50	Decline	5.08	70.05	0.004	1.000	11.50	17.00	26.05
Chloride (mg/L)	CMkolbei	31.00	Decline	4.88	50.00	0.008	1.000	11.00	20.50	35.00
Chloride (mg/L)	EYevergl	19.00	Decline	6.64	75.32	0.004	1.000	15.00	19.00	28.65
Chloride (mg/L)	EYmicroc	26.00	Decline	5.56	62.75	0.004	0.996	18.00	21.50	30.00
Chloride (mg/L)	PIgibba	35.00	Decline	2.71	36.00	0.040	0.976	11.00	28.50	60.50
Chloride (mg/L)	ACbiasol	26.00	Decline	5.57	62.60	0.004	0.992	15.00	20.50	28.50
Chloride (mg/L)	DEkuetzi	21.50	Decline	4.18	60.35	0.004	0.996	18.00	21.50	60.50
Chloride (mg/L)	AHminuti	24.00	Decline	6.05	69.10	0.004	1.000	19.00	24.00	46.50
Chloride (mg/L)	ECsilesi	17.00	Decline	4.26	66.01	0.004	0.998	13.50	18.50	35.00
Chloride (mg/L)	SYulna	94.50	Decline	6.56	94.12	0.004	1.000	69.00	92.50	100.50
Chloride (mg/L)	ANBsp	31.00	Increase	2.83	21.43	0.048	0.964	24.00	31.00	69.00
Chloride (mg/L)	CHRsp	24.00	Increase	4.69	42.11	0.004	1.000	19.50	26.00	46.50
Chloride (mg/L)	SCEquadr	69.00	Increase	4.52	30.00	0.016	0.968	31.00	72.50	92.50
Chloride (mg/L)	NAsubmin	31.00	Increase	3.01	21.43	0.032	0.966	26.50	35.00	92.50

Chloride (mg/L)	AMveneta	60.50	Increase	6.55	45.45	0.004	0.994	31.00	72.50	92.50
Chloride (mg/L)	ROabbre	92.50	Increase	8.96	59.02	0.004	0.982	69.00	86.00	94.50
Chloride (mg/L)	FRellptc	46.50	Increase	5.30	48.22	0.004	1.000	26.00	46.50	86.00
Chloride (mg/L)	NItropic	26.50	Increase	2.95	23.53	0.036	0.978	20.50	28.50	73.85
Chloride (mg/L)	NIcombal	26.50	Increase	4.81	41.18	0.004	1.000	24.00	46.50	94.50
Chloride (mg/L)	NIangtu	94.50	Increase	4.28	43.76	0.012	0.982	20.50	69.00	100.50
Chloride (mg/L)	SUbreb	94.50	Increase	5.49	45.30	0.008	0.960	26.00	77.00	100.50
Chloride (mg/L)	AMsabina	18.50	Increase	4.14	45.83	0.008	0.996	18.00	20.50	35.00
Chloride (mg/L)	GMlinfor	35.00	Increase	2.96	37.33	0.020	0.972	18.00	28.50	72.50
Chloride (mg/L)	TYapicul	31.00	Increase	4.05	43.11	0.008	0.994	20.50	35.00	94.50
Chloride (mg/L)	FAtener2	92.50	Increase	5.01	53.29	0.012	1.000	26.00	69.00	100.50
Chloride (mg/L)	PCplacen	26.00	Increase	5.31	44.44	0.008	1.000	21.50	30.00	86.00
Chloride (mg/L)	PRlaevis	46.50	Increase	7.64	69.18	0.004	1.000	26.50	35.00	72.50
Chloride (mg/L)	AMpedcls	69.00	Increase	3.50	58.66	0.012	0.986	17.00	46.50	86.00
Chloride (mg/L)	AHexigum	21.50	Increase	4.87	62.19	0.004	0.998	18.50	26.00	60.50
Chloride (mg/L)	HIhunga	92.50	Increase	6.46	87.18	0.004	1.000	19.00	73.50	94.50
Chloride (mg/L)	PTlanceo	31.00	Increase	3.65	40.25	0.008	0.956	19.00	30.00	72.50
Chloride (mg/L)	NAsancru	20.50	Increase	2.97	37.20	0.032	0.974	17.00	24.00	72.50
Chloride (mg/L)	DIconfer	28.50	Increase	6.31	71.71	0.004	1.000	18.50	26.00	35.00
Chloride (mg/L)	NIincons	20.50	Increase	5.16	67.15	0.004	1.000	18.00	21.50	73.85
Chloride (mg/L)	NIfrustu	31.00	Increase	3.18	53.80	0.020	0.954	20.50	35.00	94.50
Chloride (mg/L)	NArostel	26.00	Increase	2.81	39.65	0.028	0.986	17.00	26.00	86.00
Chloride (mg/L)	NArecens	24.00	Increase	4.54	55.41	0.008	0.978	18.00	24.00	77.00
Chloride (mg/L)	CYmenegh	92.50	Increase	4.04	75.49	0.004	0.986	20.50	35.00	94.50
Chloride (mg/L)	GOparvul	19.50	Increase	2.73	56.39	0.008	0.964	18.00	30.00	86.00

Appendix A7. Taxa-specific results from Threshold Indicator Taxa Analysis (TITAN) on **fish species composition** in response to nutrient and nutrient-related stressors among 38 sites in **Ecoregion 29** during summer 2008. Only fish species that showed significant threshold declines or increases in response to predictors are included in this table. The observed (*Obs*) threshold value of the predictor for each taxon is shown in bold, whereas lower (*10%*), middle (*50%*), and upper (*90%*) quantiles of 1,000 bootstraps represent measures of uncertainty around the observed threshold. *Z* represents the standardized indicator score from TITAN (larger numbers = stronger threshold response), *IndVal* is the unstandardized indicator score (scaled from 0-100%, with 100=perfect indicator). *Purity* is the relative consistency of the response direction among the 1,000 bootstraps (*purity* > 0.95 is significant). *P-value* is the likelihood of getting an equal or larger IndVal if the score were computed with random shuffling of the observed data (*P*<0.05 is significant). See Appendix A6 for full species names corresponding to *Taxon IDs*.

								Bootstrap	threshold q	uantiles
		Threshold	Response >							
Predictor	Taxon ID	(obs)	obs.	Z	IndVal	Р	Purity	10%	50%	90%
TP (ug/L)	CAMPANOM	24.2	Decline	4.6	66.6	0.004	0.980	19.7	27.8	44.7
TP (ug/L)	CYPRVENU	17.0	Decline	2.5	59.0	0.016	0.972	14.6	18.2	368.3
TP (ug/L)	ETHESPEC	19.7	Decline	5.8	73.8	0.004	1.000	17.0	26.8	44.7
TP (ug/L)	LEPOGULO	14.3	Decline	2.2	49.8	0.044	0.940	12.4	19.7	52.1
TP (ug/L)	LEPOMACR	61.9	Decline	4.0	61.4	0.004	0.982	34.2	69.8	598.3
TP (ug/L)	CARPCARP	52.1	Increase	3.8	33.6	0.008	0.980	28.9	52.1	770.3
TP (ug/L)	CYPRCARP	187.5	Increase	5.7	59.1	0.004	0.990	34.2	125.1	932.2
TP (ug/L)	CYPRLUTR	21.4	Increase	4.9	67.0	0.004	0.996	16.9	27.8	52.1
TP (ug/L)	LEPIOSSE	34.2	Increase	3.9	40.2	0.004	0.962	19.7	40.7	187.5
TP (ug/L)	PIMEVIGI	21.4	Increase	4.2	63.3	0.004	0.986	14.6	26.8	44.7
Pasture (%)	CYPRVENU	12.3	Decline	4.4	68.0	0.004	1.000	3.8	11.5	13.2
Pasture (%)	CAMPANOM	7.1	Decline	3.8	65.7	0.004	0.998	2.4	6.9	12.3
Pasture (%)	ETHESPEC	4.5	Decline	5.2	71.8	0.004	0.998	2.8	4.5	7.8
Pasture (%)	MOXOCONG	8.4	Decline	4.0	50.0	0.004	0.996	3.1	7.1	8.8
Pasture (%)	NOTRVOLU	8.6	Decline	4.1	51.9	0.008	0.990	2.6	8.4	9.8
Pasture (%)	ICTAPUNC	10.9	Decline	4.4	72.3	0.004	0.956	7.8	9.8	12.6

Pasture (%)	CYPRLUTR	1.6	Increase	6.1	74.5	0.004	1.000	0.8	1.8	3.3
Pasture (%)	DOROCEPE	8.8	Increase	5.6	55.8	0.004	1.000	3.1	8.6	11.5
Pasture (%)	PIMEVIGI	3.3	Increase	5.2	66.7	0.004	1.000	0.9	2.8	5.8
Pasture (%)	CARPCARP	3.8	Increase	4.4	33.3	0.008	0.996	3.1	5.8	12.3
Pasture (%)	POMOANNU	4.5	Increase	3.8	29.4	0.008	0.994	2.8	4.5	8.6
Pasture (%)	LYTHUMBR	9.8	Increase	6.5	44.4	0.004	0.980	8.6	10.9	13.2
Pasture (%)	NOTUGYRI	6.9	Increase	2.7	20.0	0.056	0.952	3.3	7.1	8.8
Outfalls (MGD)	CAMPANOM	0.3	Decline	4.9	67.9	0.004	0.984	0.0	0.3	0.9
Outfalls (MGD)	ETHESPEC	0.3	Decline	5.3	71.4	0.004	0.990	0.0	0.3	0.9
Outfalls (MGD)	FUNDNOTA	2.2	Decline	4.3	64.0	0.004	0.986	0.8	2.2	4.1
Outfalls (MGD)	LEPOCYAN	0.8	Decline	3.5	56.1	0.004	0.948	0.2	1.2	5.7
Outfalls (MGD)	LEPOMACR	2.2	Decline	3.8	60.7	0.004	0.982	0.4	1.2	3.6
Outfalls (MGD)	CYPRCARP	4.1	Increase	3.1	46.2	0.008	0.966	0.1	3.5	5.7
Outfalls (MGD)	CYPRLUTR	0.4	Increase	4.5	66.4	0.004	0.996	0.0	0.2	1.0
Outfalls (MGD)	DOROCEPE	0.4	Increase	2.8	30.7	0.024	0.910	0.0	0.9	5.7
Outfalls (MGD)	ICTAPUNC	3.5	Increase	3.2	64.5	0.008	0.902	0.8	3.5	4.5
Outfalls (MGD)	LEPIOSSE	0.6	Increase	3.8	40.2	0.016	0.944	0.1	0.8	3.2
Outfalls (MGD)	PIMEVIGI	0.4	Increase	4.7	66.4	0.004	0.952	0.0	0.3	1.0
Outfalls (MGD)	PYLOOLIV	3.5	Increase	5.0	72.9	0.004	0.998	0.8	2.2	3.6
Mud-silt (%)	CAMPANOM	0.0	Decline	4.0	64.6	0.008	0.942	0.0	3.8	12.5
Mud-silt (%)	CYPRVENU	1.5	Decline	3.1	58.6	0.012	0.996	0.0	8.8	17.8
Mud-silt (%)	ICTAPUNC	15.0	Decline	3.9	67.4	0.004	0.976	7.3	15.0	17.0
Mud-silt (%)	LEPOCYAN	7.3	Decline	3.5	56.4	0.012	0.970	0.9	8.8	18.2
Mud-silt (%)	NOTRVOLU	7.5	Decline	2.5	43.5	0.032	0.950	0.0	6.0	15.4
Mud-silt (%)	CYPRLUTR	6.0	Increase	3.8	64.1	0.004	0.982	0.2	3.8	8.8
Mud-silt (%)	LEPIOSSE	15.0	Increase	3.8	47.9	0.012	0.926	2.2	15.0	18.2

Mud-silt (%)	LYTHUMBR	16.0	Increase	6.6	50.0	0.004	0.992	12.5	16.0	18.2
Mud-silt (%)	PIMEVIGI	1.5	Increase	3.7	63.1	0.004	0.992	0.2	2.5	12.5
Chloride (mg/L)	AMEINATA	12.0	Decline	3.3	68.4	0.004	0.980	11.0	17.0	26.5
Chloride (mg/L)	CAMPANOM	17.0	Decline	4.5	68.7	0.004	1.000	15.0	19.5	86.0
Chloride (mg/L)	ETHESPEC	30.0	Decline	4.6	69.2	0.004	1.000	17.0	24.0	60.5
Chloride (mg/L)	FUNDNOTA	60.5	Decline	3.7	61.0	0.004	0.974	19.0	46.5	73.5
Chloride (mg/L)	LEPOGULO	19.5	Decline	3.5	49.5	0.016	0.962	15.0	19.0	28.5
Chloride (mg/L)	LEPOMACR	92.5	Decline	4.6	66.4	0.004	0.998	30.0	77.0	100.5
Chloride (mg/L)	CARPCARP	46.5	Increase	6.2	50.0	0.004	1.000	28.5	46.5	73.5
Chloride (mg/L)	CYPRCARP	30.0	Increase	3.9	40.6	0.008	0.990	18.5	35.0	94.5
Chloride (mg/L)	CYPRLUTR	13.5	Increase	7.9	88.1	0.004	1.000	11.5	13.5	18.0
Chloride (mg/L)	PIMEVIGI	13.5	Increase	6.9	86.3	0.004	1.000	11.5	13.5	19.0
Chloride (mg/L)	PYLOOLIV	19.5	Increase	3.5	58.5	0.004	0.936	17.0	20.5	61.4